

## ORIGINAL ARTICLE

# Confederacy of ABO Alleles with Ischemic Heart Disease: An Angiographic Study

Marifa Parveen<sup>1</sup> Bisma Farooq<sup>2</sup>, Komal Asghar<sup>3</sup>, Muhammad Saeed<sup>4</sup>, Hamza Farooq<sup>5</sup>, Farhan Rasheed<sup>6</sup>, Muhammad Anjum<sup>7</sup>

## Author's Affiliation

<sup>1</sup> Women Medical Officer, Rural Health Centre, Warburton, Nankana Sahib

<sup>2</sup> Women Medical Officer Rural Health Centre, Gogera District Okara

<sup>3</sup> Women Medical Officer, Rural Health Centre, Syed wala Nankana Sahib

<sup>4</sup> M.Phil Scholar (Microbiology)  
Medical Lab Technologist, DHQ Hospital Mandi Bahauddin,

<sup>5</sup> Student 3<sup>rd</sup> year MBBS Services Institute of Medical Sciences Lahore,

<sup>6</sup> Assistant Professor Pathology  
Pathology department, Allama Iqbal Medical College, Lahore

<sup>7</sup> Senior Registrar cardiology  
Angiography Department Punjab Institute of Cardiology Lahore

## Author's Contribution

<sup>1,3</sup> Conception, planning of research and writing of manuscript, Discussion

<sup>2</sup> Interpretation, <sup>4</sup> Data Collection & Principle Investigator <sup>5</sup> help in references <sup>6</sup> Statistical Analysis <sup>7</sup> Proof Reading

## Article Info

Received: Dec 18, 2017

Accepted: May 30, 2018

Funding Source: Nil

Conflict of Interest: Nil

## Address of Correspondence

Muhammad Saeed

Email: Mian.scientist@yahoo.com

## Introduction

ABO blood group system was revealed more than one century ago.<sup>1</sup> These are carbohydrate particles stated on the superficial area of red blood cells (RBC).<sup>2</sup> Blood group A contain different glycosyl transferases as compare to blood Group B while O alleles do not have any transferase functional enzyme.<sup>3</sup> Furthermore ABO antigens are also present in different cells and tissue of human body i.e epithelium, sensory neurons, platelets, and vascular endothelium.<sup>4</sup> ABO blood group alleles are seemingly associated with pathophysiology of multiple disease

## ABSTRACT

**Objective:** To establish whether the ABO alleles are in confederacy with Ischemic Heart Disease (IHD) in Pakistani Population

**Study Design:** Analytic comparative study

**Place and Duration:** Punjab Institute of Cardiology Lahore, from September 2015 to September 2016

**Methodology:** About 734 IHD suspects and 500 controls were selected via non-probability purposive sampling techniques. Out of 734 suspects of IHD, 599 (81%) were diagnosed as confirmed IHD patients by interventional coronary. Control group were selected from adult healthy blood donors with no symptoms of IHD and normal ECG. All subjects were processed for ABO blood grouping, Baseline characteristics and cardio-vascular risk factors were assessed by a cardiologist. Chi-square test was used as a test of significance; p-value of <0.05 was considered statistically significant. Win Pepi software was used for statistical analysis of data

**Results:** Mean age of cases and control was  $48 \pm 12.34$  years and  $47.3 \pm 2.38$  years respectively. Both in cases and controls, number of males were more as compared to females. Blood group A and AB was significantly more in cases as compared to control. In control group blood group B and O was significantly more frequent as compared to cases. Among cases most common risk factors were smoking (77.1%), ghee abuser (75%), hyperlipidemia (73.1%) and hypertension (71.1%). Majority of controls (59.2%) gave history of performing exercise (Table I). All the risk factors had a significant association with types of blood group.

**Conclusion:** Blood groups are significantly different between cases and controls. Risk factors have significant association with blood groups.

**Keywords:** ABO, Ischemic heart disease, Risk factors.

especially cardiac diseases.<sup>5,6</sup> Therefore, clinical significance of ABO blood group alleles with heart disease is not astonishing.

Cardiovascular diseases (CVD) are considered as one of the foremost critical dilemmas among this civilized world. Disturbed the delivery of oxygenated blood, To the heart, which leads to development cardiac disabilities. CVD, are a group of multifactorial diseases, involves heart and blood vessels. The deposition of cholesterol plaques, blocked the blood vessels and as a result deprived the supply of the oxygen and nutrients to

the heart, which ultimately leads to the death of that different area of cardiac tissue, resulting in myocardial infarction.<sup>7</sup>

CVD is the major cause of mortality in the world with almost 17.3 million deaths annually.<sup>8</sup> In the year of 2000, almost 30.3% of all the deaths around the globe were due to CVD. Most of them were from developing countries.<sup>9</sup> National health survey of Pakistan (NHSP) in 2001, reported that IHD is the most common type of CVD. It is responsible for 12% adult mortality.<sup>10</sup> IHD is an inflammatory process with complicated pathology that plays a significant role in the commencement and progression.<sup>11</sup> The family history of hypertension, hyperlipidemias, diabetes mellitus and genetic properties are major risk factors associated with IHD.<sup>12</sup>

Various studies have been conducted to suggest the relationship of ABO blood groups and IHD, such that individuals of a non-O type (A, B, or AB) are more likely to have IHD than blood group "O" individuals.<sup>13-15</sup> But that doesn't mean an individual with blood group other than O should be excessively alarmed. Furthermore, studies have shown that non-O-type individuals with elevated cholesterol absorption rates.<sup>16</sup> Therefore, IHD susceptibility is influenced by ABO group due to its direct effect on cholesterol levels. Blood is a complete and unalterable moiety of any individual. ABO and Rh are major clinically significant blood Group Antigens. The antigens of the ABO blood group are composed of glycoproteins and glycolipids. This ABO group contains A and B alleles on their locus which are responsible for glycosyl-transferase activities associated with A and B. The A and B alleles of the ABO locus encode A and B glycosyl-transferase activities, which alter the precursor H antigen. These antigens contain extra saccharide unit known as the O unit (N-acetyl galactosamine and galactose). This transferase enzyme activity is absent from O group individuals and unchanged H-antigen has expressed.<sup>17</sup> This study was

planned to determine the association between ABO blood groups and IHD.

## Methodology

A total of 734 suspects of IHD were selected randomly and processed for Interventional coronary angiography. Out of 734 total 599 (81%) confirmed IHD cases were included in the study. Total 500 individuals with no symptoms of IHD and normal ECG were selected as controls from adult healthy blood donors. About 2 ml EDTA blood samples were collected from every individual and processed for ABO blood grouping by standard hem-agglutination technique. Cardiovascular risk factors were assessed by a cardiologist. Clinical features along with demographical characteristic of patients, previous history of hypertension, diabetes and smoking were collected from medical records. All cases of valvular heart disease, congestive heart failure, autoimmune disease and rheumatic heart disease were excluded from the study. Frequencies and percentages were calculated by SPSS 21.0,

## Results

Mean age of cases and control was  $48 \pm 12.34$  years and  $47.3 \pm 2.38$  years respectively. Both in cases and controls, number of males were more as compared to females (Table I). Blood group A and AB was significantly more in cases as compared to control. In control group blood group B and O was significantly more frequent as compared to cases (Table I). Among cases most common risk factors were smoking (77.1%), ghee abuser (75%), hyperlipidemia (73.1%) and hypertension (71.1%). Majority of controls (59.2%) gave history of performing exercise (Table I). All the risk factors had a significant association with types of blood group (Table II).

**Table I: Demographic variables and Risk factors among cases and control**

| Variables         | Cases IHD (n=599) |            | Controls (n=500) |            | $\chi^2$ and p-Value        |
|-------------------|-------------------|------------|------------------|------------|-----------------------------|
|                   | Frequency         | Percentage | Frequency        | Percentage |                             |
| Male              | 419               | 69.9       | 382              | 76.4       |                             |
| Female            | 180               | 30.1       | 118              | 23.6       |                             |
| Blood group A     | 216               | 36.1       | 120              | 24         | $\chi^2 = 18.67$ p = 0.000  |
| Blood group B     | 162               | 27.0       | 170              | 34         | $\chi^2 = 6.25$ p = 0.012   |
| Blood group AB    | 115               | 19.2       | 45               | 9          | $\chi^2 = 22.79$ p = 0.000  |
| Blood group O     | 106               | 17.7       | 165              | 33         | $\chi^2 = 34.35$ p = 0.000  |
| Smoker            | 462               | 77.1       | 139              | 27.8       | $\chi^2 = 323.48$ p = 0.000 |
| Hypertension      | 426               | 71.1       | 211              | 42.2       | $\chi^2 = 93.53$ p = 0.000  |
| Hyperlipidemia    | 438               | 73.1       | 185              | 37.0       | $\chi^2 = 144.82$ p = 0.000 |
| Diabetic          | 246               | 41.1       | 75               | 15.0       | $\chi^2 = 89.56$ p = 0.000  |
| Family History    | 234               | 39.1       | 213              | 42.6       | $\chi^2 = 1.41$ p = 0.235   |
| Exercise habitual | 216               | 36.1       | 296              | 59.2       | $\chi^2 = 58.642$ p = 0.000 |
| Banapati abuser   | 449               | 75.0       | 173              | 34.6       | $\chi^2 = 180.70$ p = 0.000 |

**Table: II Association of risk factors and blood groups between cases and control**

| Risk factors      | Blood Groups       |                     |                    |                     |                    |                     |                    |                     | $\chi^2$ and p-value          |  |
|-------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|-------------------------------|--|
|                   | A (n=336)          |                     | B (n=332)          |                     | AB (n=260)         |                     | O (n=271)          |                     |                               |  |
|                   | I<br>n=216<br>n(%) | II<br>n=120<br>n(%) | I<br>n=162<br>n(%) | II<br>n=170<br>n(%) | I<br>n=115<br>n(%) | II<br>n=145<br>n(%) | I<br>n=106<br>n(%) | II<br>n=165<br>n(%) |                               |  |
| Smoker            | 115<br>(53.2)      | 45<br>(37.5)        | 142<br>(87.6)      | 65<br>(38.2)        | 91<br>(79.1)       | 20<br>(13.7)        | 84<br>(79.2)       | 30<br>(18.1)        | $\chi^2 = 10.21$<br>p = 0.017 |  |
| Hypertension      | 112<br>(51.8)      | 86<br>(71.6)        | 144<br>(88.8)      | 75<br>(44.1)        | 75<br>(65.2)       | 35<br>(24.1)        | 95<br>(65.5)       | 15<br>(9.0)         | $\chi^2 = 28.57$<br>p = 0.000 |  |
| Hyperlipidemia    | 192<br>(88.8)      | 65<br>(54.1)        | 85<br>(52.4)       | 45<br>(26.4)        | 96<br>(83.4)       | 20<br>(13.7)        | 65<br>(61.3)       | 55<br>(33.3)        | $\chi^2 = 12.91$<br>p = 0.005 |  |
| Diabetic          | 58<br>(26.8)       | 25<br>(20.8)        | 82<br>(50.6)       | 15<br>(8.8)         | 86<br>(74.7)       | 17<br>(11.7)        | 20<br>(13.7)       | 18<br>(10.9)        | $\chi^2 = 20.43$<br>p = 0.000 |  |
| Family History    | 69<br>(31.9)       | 95<br>(79.1)        | 72<br>(44.4)       | 28<br>(16.4)        | 39<br>(33.9)       | 38<br>(26.2)        | 54<br>(50.9)       | 52<br>(31.5)        | $\chi^2 = 42.55$<br>p = 0.000 |  |
| Exercise habitual | 63<br>(29.1)       | 69<br>(57.5)        | 54<br>(33.3)       | 112<br>(65.8)       | 49<br>(42.6)       | 47<br>(32.4)        | 50<br>(47.1)       | 69<br>(41.8)        | $\chi^2 = 11.10$<br>p = 0.011 |  |
| Banaspati abuser  | 141<br>(65.2)      | 81<br>(67.5)        | 182<br>(81.4)      | 24<br>(14.1)        | 86<br>(74.7)       | 30<br>(20.6)        | 77<br>(72.6)       | 38<br>(23.0)        | $\chi^2 = 21.72$<br>p = 0.000 |  |

I=Cases, II = Control

## Discussion

In last few years multiple reports have reported significant association between blood group and coronary heart disease or Ischemic Heart Disease. Previous studies has reported high rate of stable angina and acute myocardial infarction among blood group AB.<sup>18</sup> A study from England also reported high rate of IHD among blood group AB population.<sup>19</sup> Similarly a study conducted by Ali et showed blood group A was 3.14 fold more predominant than B, 6.35 fold than O, and 3.32 fold than AB.<sup>20</sup> Likewise, A was leading among the patients in Rawalpindi.<sup>21</sup>

It is very interesting for us to study about certain blood groups and their association with IHD and its development.

The results of present study showed a significant association between IHD and ABO blood groups principally blood group "A". Among control group, the most common blood groups were "B"(34%). Among IHD confirm patients 420(78%) were male and

180(22%) were female. The blood group "A" was found to be a most prevalent group among IHD patients and "O" group was the least common with the frequency of 36 % and 17 % respectively. While in the category of the control group "B" was observed more common as compared to "A" and "AB" blood group. Among the risk factors associated with IHD, it was observed that lack of doing exercise is also a significant risk factor for IHD patient. The ratio of IHD is highest among people with a habit of not doing exercise on regular basis.

Clinically IHD in South Asians (Pakistani) is similar to the population of Europe. Whincup et al report very similar results

to present study, from England<sup>22</sup> And from other parts of Europe,<sup>23</sup> and USA.<sup>24</sup> Modern science proves certain parameters as risk factors linked with IHD. According to researchers the age, gender, family history of IHD is considered as non-modifiable factors. Although other factors i.e; history of any comorbidities (hypertension, obesity, smoking, diabetes are more threatening factors. People with large BMI are more prone to develops IHD. In Pakistan ghee is used as common cooking oil on daily basis and it is one of the major sources for Pakistani population to getting IHD. Researchers have been trying to find out any path-physiological co-relation among blood groups and IHD. Different theories about their mechanisms have been reported. Genetic Studies showed that genes for ABO group's inheritance were located on chromosome 9 (locus 9p34). At the same places, the genes responsible for the cholesterol balance is also found, so it was claimed by different genetic investigators that there would be the possibility of genetic exchange between IHD and ABO groups.<sup>25</sup>

In consistency to this proposal, non "O" group individuals have a significant tendency of developing a relationship with hypercholesterolemia and previous family history of IHD. Several biomarkers are also possible factors for IHD, predominantly von Willebrand factor (vWF) and factor VIII<sup>26</sup>. Factor VIII is more common in non-O blood group. While on the other side von Willebrand factor is found 25% more among non O people as compared to "O" blood group.<sup>27</sup> Therefore, elevated factor VIII-vWF levels have more chances to form blood clots and coagulation, which results in the development of more heart issues. vWF playing an important role in platelets and vascular

wall interaction, and acting as a significant factor in Factor VIII function. Deficiency of vWF is associated with bleeding, its redundancy was established to be coupled with thrombosis.<sup>28</sup> For that reason, coronary heart problems are connected with vWF levels in blood.<sup>29</sup>

Furthermore, the reason of fluctuation in vWF levels in blood groups is not clear yet. The interaction of different antigenic properties of ABO groups in endothelial cells may have an impact on the synthesis of vWF.<sup>30</sup> According to a study conducted by Gill et al., the lowest amount of vWF in "O" blood group people is 75IU/dL and highest levels reported in an "O" was 123 IU/dL respectively.<sup>27</sup> But the high ratio of factor VIII levels were also reported in a study among ABO blood group.<sup>31</sup> The process of atherosclerosis is mediated by adhesion molecules. Different studies reported that inflammatory markers including soluble P-selection, soluble E selection, and insoluble intercellular adhesion molecules are closely linked with IHD.<sup>32,33</sup> Single nucleotide polymorphisms at ABO locus are associated with these inflammatory markers according to genetic studies.<sup>34,35</sup> Several previous studies have shown that patients of non-O blood group have significantly higher rates of myocardial infarction as compared to blood group O.<sup>30,36</sup> As per the report of Northwick Park Heart Study, "AB" group are at more risk for developing IHD as compared to other groups. Patient with phenotype showed the highest incidence of IHD by Framingham.<sup>37</sup> Lee et al declared group "A" as an independent risk factor for IHD.<sup>38</sup> While according to He et al., "B" is a sovereign aspect of myocardial infarction.<sup>37</sup> In a meta-analysis conducted on a time frame of 20 years on follow up patients, it was observed that blood group "O" had relatively at lower risk of acquiring IHD with respect to other groups.<sup>37</sup> In another study by Sharif et al showed The prevalence of blood groups in IHD group was 34% in blood group A, 29% in blood group B, 14% in blood group AB and 23% in blood group O. In control group the distribution of B, A, AB and O blood groups were 34.4%, 20.9%, 12.6%, 32.2% respectively. A Rh+ve factor was prevalent in 90.5% among IHD group and 92.6% in control subjects.

A previous study stated that frequency of IHD was 63.5% and 36.5% among males and females respectively, Hypertension was 58.5%, diabetes 53%, family history 45%, exercise habitual were only 35.5%, 58.5% were ghee abuser, and 58% were smokers.<sup>39</sup> No difference between blood groups and IHD were reported by Amirzadegan et al and biancari et al in their work. There are significantly higher chances of myocardial infarction was observed in individual with blood group B.<sup>38</sup> While

people belonging to a non-O blood type people around the world still have not reported any case of developing IHD.

## Conclusion

We conclude that there may be a significant association between various blood groups and IHD. Though the exact cause is unknown, a multitude of serious factors is linked with the development of IHD. "Thus, in our opinion, health status of any person is directly manipulated by the lifestyle of any individual.

## References

1. Storry JR, Olsson ML. The ABO blood group system revisited: a review and update. *Immunohematology*. 2009;25:48–59.
2. Franchini M, Liumbruno GM. ABO blood group: old dogma, new perspectives. *Clin Chem Lab Med*. 2013;51:1545–53.
3. Liumbruno GM, Franchini M. Hemostasis, cancer, and ABO blood group: the most recent evidence of association. *J Thromb Thrombolysis*. 2014;38:160–6.
4. Anstee DJ. *The relationship between blood groups and disease*. *Blood*. 2010;115:4635–43.
5. Franchini M, Favaloro EJ, Targher G, Lippi G. ABO blood group, hypercoagulability, and cardiovascular and cancer risk. *Crit Rev Clin Lab Sci*. 2012;49:137–49.
6. Dentali F, Sironi AP, Aggeno W, Crestani S, Franchini M. ABO blood group and vascular disease: an update. *Semin Thromb Hemost*. 2014;40:49–59.
7. Banerjee S, Datta UK. Relationship of ABO Blood Groups with Ischaemic Heart Disease.
8. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ. Heart disease and stroke statistics—2012 update a report from the American heart association. *Circulation*. 2012 Jan 3;125(1):e2-20
9. World Health Organization. The World Health Report 2001: Mental health: new understanding, new hope. World Health Organization; 2001.
10. Yasmeen B, Zakar MZ, Khan MZ, Jamshaid N, Qureshi S. Magnitude and Determinants of Socio-demographic Variables in Social Support, Coping & Subjective Well-Bing of Kidney Patients in Lahore (Pakistan). *Pakistan Vision*. 2013 Dec 1;14(2):231.
11. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. *New England Journal of Medicine*. 2005 Apr 21;352(16):1685–95.
12. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. *New England Journal of Medicine*. 1994 Apr 14;330(15):1041–6.
13. Wu O, Bayoumi N, Vickers MA, Clark P. ABO (H) blood groups and vascular disease: a systematic review and meta-analysis. *Journal of Thrombosis and Haemostasis*. 2008 Jan 1;6(1):62–9.
14. Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, Burnett MS, Devaney JM, Knouff CW, Thompson JR, Horne BD. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction

in the presence of coronary atherosclerosis: two genome-wide association studies. *The Lancet*. 2011 Feb 4;377(9763):383-92.

15. He M, Wolpin B, Rexrode K, Manson JE, Rimm E, Hu FB, Qi L. ABO blood group and risk of coronary heart disease in two prospective cohort studies. *Arteriosclerosis, thrombosis, and vascular biology*. 2012 Sep 1;32(9):2314-20.
16. Silbernagel G, Chapman MJ, Genser B, Kleber ME, Fauler G, Scharnagl H, Grammer TB, Boehm BO, Mäkelä KM, Kähönen M, Carmena R. High intestinal cholesterol absorption is associated with cardiovascular disease and risk alleles in ABCG8 and ABO: evidence from the LURIC and YFS cohorts and from a meta-analysis. *Journal of the American College of Cardiology*. 2013 Jul 23;62(4):291-9.
17. Franchini M, Capra F, Targher G, Montagnana M, Lippi G. Relationship between ABO blood group and von Willebrand factor levels: from biology to clinical implications. *Thrombosis journal*. 2007 Sep 25;5(1):1.
18. Lutfullah , Bhatti TA, Hanif A, Shaikh SH, Khan BZ, Bukhshi I A. ABO blood group distribution and ischaemic Heart Disease. *Annals*. 2011;17:36–39.
19. Meade TW, Coopern JA, Stirling Y, Howarth DJ, Ruddock V, Miller GJ. Factor VIII, ABO blood group and the incidence of ischaemic heart disease. *Br J Haematol*. 1994;88:601–607. [PubMed]
20. Wazirali H, Ashfaque RA, Herzog JW. Association of blood group A with increased risk of Coronary Heart Disease in the Pakistani population. *Pak J Physiol*. 2005;1:1–12.
21. Khan IA, Farid M, Qureshi SM, Chaudhry MA, Ishaq M. Relationship Aye with Ischemic Heart Disease. *Pak Med Res Council*. 2005;44:1–19.
22. Balarajan R, Adelstein AM, Bulusul, Shukla U. Patterns of mortality among migrants to England and Wales from the Indian subcontinent. *Br. Med. J.*, 1984, 289: 1185-1187.
23. McKeigue PM, Marmot MG. Mortality from coronary heart disease in Asian communities in London. *Br. Med. J.*, 1988, 297: 903.
24. Wu O, Bayoumi N, Vickers MA, Clark P. ABO(H) blood groups and vascular disease: a systematic review and meta-analysis. *J ThrombHaemost* 2008; 6: 62-9.
25. Gill JC, Endres-Brooks J, Bauer PJ, Marks WJ Jr, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand disease. *Blood* 1987; 69: 1691-5.
26. Vischer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. *J ThrombHaemost* 2006; 4: 1186-93.
27. Folsom AR, Wu KK, Rosamond WD, Sharrett AR, Chambliss LE. Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. *Circulation* 1997; 96: 1102-8.
28. Franchini M, Capra F, Targher G, Montagnana M, Lippi G. Relationship between ABO blood group and von Willebrand factor levels: from biology to clinical implications. *Thromb J* 2007; 5: 14
29. Preston AE, Barr A. The Plasma Concentration of Factor VIII in the Normal Population. II. The Effects of Age, Sex and Blood Group. *Br J Haematol* 1964; 10: 238-45. [
30. Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ, Allen J. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. *Lancet* 1998; 351: 88-92.
31. Hwang SJ, Ballantyne CM, Sharrett AR, Smith LC, Davis CE, Goto AM Jr, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. *Circulation* 1997; 96: 4219-25.
32. Barbalic M, Dupuis J, Dehghan A, Bis JC, Hoogeveen RC, Schnabel RB, et al. Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels. *Hum Mol Genet* 2010; 19: 1863-72.
33. Pare G, Chasman DI, Kellogg M, Zee RY, Rifai N, Badola S, et al. Novel association of ABO histo-blood group antigen with soluble ICAM-1: results of a genome-wide association study of 6,578 women. *PLoS Genet* 2008; 4: e1000118.
34. Nydegger UE, Wuillemin WA, Julmy F, Meyer BJ, Carrel TP. Association of ABO histo-blood group B allele with myocardial infarction. *Eur J Immunogenet* 2003; 30: 201-6.
35. Garrison RJ, Havlik RJ, Harris RB, Feinleib M, Kannel WB, Padgett SJ. ABO blood group and cardiovascular disease: the Framingham study. *Atherosclerosis* 1976; 25: 311-8.
36. Lee HF, Lin YC, Lin CP, Wang CL, Chang CJ, Hsu LA. Association of blood group A with coronary artery disease in young adults in Taiwan. *Intern Med* 2012; 51: 1815-20.
37. He M, Wolpin B, Rexrode K, Manson JE, Rimm E, Hu FB, et al. ABO blood group and risk of coronary heart disease in two prospective cohort studies. *Arterioscler Thromb Vasc Biol* 2012; 32: 2314-20.
38. Amirzadegan A, Salarifar M, Sadeghian S, Davoodi G, Darabian C, Goodarzynejad H. Correlation between ABO blood groups, major risk factors, and coronary artery disease. *Int J Cardiol* 2006; 110: 256-8.
39. Sharif S, Anwar N, Farasat T, Naz S. ABO blood group frequency in Ischemic heart disease patients in Pakistani population. *Pakistan Journal of Medical Sciences*. 2014;30(3):593-595. doi:10.12669/pjms.303.4502.