

Relationship Between History/Physical Examination and Radiological Findings with Surgical Findings to Determine the Level of Obstruction

Kanwal Muhammad Hanif ¹, Zahid Mehmood ², Rooh Ali ³, Kanwal Soomro ⁴, Abdul Waheed ⁵

^{1,3} Postgraduate Trainee FCPS-II, General Surgery Department JPMC Karachi

²Associate Professor, HOD, General Surgery Department JPMC Karachi

^{4,5} Senior Registrar, General Surgery Department JPMC Karachi

Author's Contribution
^{1,3} Substantial contributions to the conception or design of the work; or the acquisition, ⁴ Active participation in active methodology, ⁵ analysis, or interpretation of data for the work, ² Drafting the work or revising it critically for important intellectual content
Funding Source: None
Conflict of Interest: None
Received: Dec 21, 2023
Accepted: May 27, 2024

Address of Correspondent
Dr Kanwal Muhammad Hanif
Postgraduate Trainee FCPS-II,
General Surgery Department
JPMC Karachi
kanwalgadit979@gmail.com

ABSTRACT

Objective: To assess the correlation between the clinical findings and radiological findings with surgical findings in patients with intestinal obstruction and the subsequent determination of the level and severity of the obstruction.

Methods: This prospective observational study was done at the general surgery department of JPMC Karachi, during 12-month from January 2022 to December 2022. Adults aged 15 years and above, clinically and radiologically suggestive of intestinal obstruction and underwent surgical intervention were included. Clinical data was collected through thorough physical examinations and detailed medical history reviews. Parameters such as abdominal pain, distension, bowel sounds, and other relevant symptoms were documented. Radiological investigations were analyzed for evidence of obstruction and its location. Patients who undergone surgical intervention, their operative findings were correlated with clinical and radiological findings. Data analysis was done by using SPSS version 26.

Results: Overall, 44 patients were studied with mean age of 38.59 ± 7.77 years, 56.8% were male and 42.3% female. Common clinical findings included inability to pass gas or stool (97.7%), constipation (95.5%), dehydration (93.2%), and tachycardia (93.2%). Radiologically, air-fluid levels with valvulae conniventes were most frequent (52.3%). Intra-operatively, omental bands (22.7%) were the most common finding. There was a significant association between clinical symptoms, such as tenderness and anorexia, with specific intraoperative findings ($p=0.004$). Radiological findings, particularly air-fluid levels, were strongly associated with surgical diagnoses ($p=0.001$), highlighting their importance in guiding treatment.

Conclusion: Clinical assessments and abdominal X-rays in diagnosing intestinal obstruction, applicable in only a few instances. It emphasizes the superior diagnostic capability of abdominal CT scans, may enhance the surgeon's understanding of the underlying pathology.

Key words: Intestinal obstruction, clinical features, radiology, operative findings

Cite this article as: Hanif KM, Mahmood Z, Ali R, Soomro K, Waheed A. Relationship between History/Physical Examination and Radiological Findings with Surgical Findings to Determine the Level of Obstruction. Ann Pak Inst Med Sci. 2024; 20(3):504-510.doi.10.48036/apims.v20iSUPPL-1.934

Introduction

Intestinal obstruction stands as a critical surgical condition necessitating prompt diagnosis and intervention to prevent complications and improve patient outcomes. Its etiology varies not only between nations but also within different regions of a single country.² Since the

turn of the century, adhesive obstruction has been reported as the most common cause of intestinal obstruction in Western nations, while obstructed hernias continue to be the leading cause in underdeveloped nations.^{2,3} It also imposes significant financial strain due to prolonged hospitalization. In instances of ileus with delayed treatment, patients may progress to sepsis, which

represents a critical factor contributing to mortality and morbidity, particularly among the elderly population.^{4,5}

Globally, the occurrence and treatment outcomes of intestinal obstruction also differ across nations, influenced by factors such as ethnic composition, age demographics, dietary patterns, urban or rural residence, geographic region, community living standards, symptoms at presentation, duration of hospitalization, existing medical conditions, length of surgical procedures, illness duration, peritonitis presence, and healthcare service accessibility.⁶⁻⁸ It constitutes roughly 15% of acute abdominal pain cases seen in emergency departments. Potential complications encompass bowel ischemia and perforation.⁹ While advancements in diagnostic capabilities have reduced associated morbidity and mortality, diagnosing intestinal obstruction still poses significant surgical challenges.⁹

Typically, patients present with symptoms like nausea, vomiting, intermittent abdominal pain, and cessation of bowel movements and gas passage.¹ However, the intensity of these symptoms may vary depending on the urgency and location of the obstruction. Classic indicators such as distension of the abdomen, resonant sound upon tapping, and increased bowel sounds are often observed.¹ Ultrasound examination of the abdomen serves as an initial assessment for patients experiencing abdominal pain and swelling, boasting high sensitivity for detecting severe obstructions, with rates reaching approximately 85%.¹⁰ When clinical examination and radiographic findings fail to provide a definitive diagnosis, ultrasound is often utilized as a supplementary diagnostic tool.¹⁰ Computed tomography (CT) typically stands out as the preferred and precise diagnostic imaging method for suspected bowel obstructions in most cases.¹¹

Other frequently employed imaging techniques encompass plain radiography and contrast imaging. Conversely, ultrasonography and magnetic resonance imaging are less frequently utilized for this purpose.¹¹ A recent study underscores the pivotal role of imaging in the contemporary assessment and treatment of suspected intestinal obstruction. CT emerges as the preferred imaging method for most patients due to its accessibility, diagnostic precision, and ability to offer comprehensive insights into the underlying cause of obstruction and potential complications.¹¹ Early recognition of obstruction, prompt diagnosis, proactive preoperative interventions, enhance the patient outcomes. However, in rural regions of low-income countries where advanced

imaging resources are often lacking, prioritizing a comprehensive clinical assessment becomes imperative during the initial phases.¹² This approach allows for initial patient assessment, enabling swift referrals to tertiary healthcare facilities for timely intervention aimed at reducing morbidity and mortality. Consequently, this study aims to establish a correlation between clinical findings, radiological assessments, and operative observations in cases of intestinal obstruction. By doing so, it seeks to validate the reliability of clinical features both with and without radiological findings.

Methodology

A prospective observational study was done at the general surgery department of JPMC Karachi. The study was conducted over a 12-month period from January 2022 to December 2023. Adults aged 15 years and above, clinically and radiologically suggestive of intestinal obstruction and underwent surgical intervention were included. All the unwilling patients, pregnant women and patients with cognitive impairment or language barriers were excluded. Informed consent was taken from each case. Patients were assured that participation is voluntary and that refusal to participate not affect their medical care in any way. Clinical data was collected through physical examinations and detailed medical history reviews.

Parameters such as abdominal pain, distension, bowel sounds, and other relevant symptoms were documented. Radiological investigations, including abdominal X-rays and computed tomography (CT) scans, were analyzed for evidence of obstruction, its location, and severity. Patients who underwent surgical intervention, their operative records and findings were documented. Surgical findings of the obstruction identified were correlated with clinical and radiological findings. Data analysis was done by using SPSS version 26.

Results

Overall, 44 patients were studied with mean age of 38.59 ± 7.77 years, 56.8% were male and 42.3% female. The most common clinical findings were inability to pass gas or stool (97.7%), constipation (95.5%), dehydration (93.2%), and tachycardia (93.2%). Frequent symptoms included vomiting/nausea (90.9%), weight loss (50.0%), and hyperactive/absent bowel sounds (56.8%). Radiologically, the most common finding was air-fluid levels with valvulae conniventes (52.3%), with other findings like hastruation, dilated cecum, and featureless loops observed in fewer cases. (Table I)

Table I: Clinical and radiological findings of the patients (n=44)

Variables	N	%
Clinical presentation/ physical examination	Constipation	42 95.5
	Inability to pass gas or stool	43 97.7
	Vomiting/nausea	40 90.9
	Tenderness	15 34.1
	Anorexia	16 36.4
	Weight loss	22 50.0
	Dehydration	41 93.2
	Hyperactive or absent bowel sounds	25 56.8
	Tachycardia	41 93.2
	Tenesmus (straining during bowel movements)	6 13.6
Radiological findings	Valvulae conniventes	2 04.5%
	Haustration, air in cecum	2 04.5%
	Air fluid levels, Haustration, dilated cecum	2 04.5%
	Air fluid levels, valvulae conniventes	23 52.3%
	Air fluid levels, valvulae conniventes, ilium loop	4 09.1%
	Air fluid levels, Haustration	4 09.1%
	Air fluid levels, valvulae conniventes, featureless loop	6 13.6%
	Air fluid levels, valvulae conniventes, ground appearance	1 02.3%

According to intraoperative findings, most common finding was an omental band (22.7%), followed by pus with perforation (6.8%). Adhesions, masses, strictures, and intussusception each accounted for smaller portions, with frequencies ranging from 2.3% to 4.5%. Other less frequent findings included foreign bodies, appendicitis, and hernias. Overall, the data highlights the diverse intraoperative causes of intestinal obstruction, with omental bands being the most prevalent as shown in (Table II)

On the association between clinical findings and intraoperative findings the most common clinical symptoms, such as constipation (95.5%), inability to pass gas or stool (97.7%), and vomiting/nausea (90.9%), were present across various intraoperative diagnoses. Notably, tenderness and anorexia were significantly associated with multiple findings, including omental bands and strictures ($p=0.004$). Hyperactive or absent bowel sounds and weight loss showed a weaker association with some findings, such as adhesions and masses ($p=0.010$ and $p=0.055$, respectively). Other symptoms, like constipation and inability to pass stool, showed no

significant association ($p=0.387$ and $p=1.00$) as shown in (Table III)

Table II: Intraoperative findings of the patients with intestinal obstruction. (n=44)

Intraoperative findings	N	%
Adhesion at ilium and appendicitis	1	2.3
Adhesions at junction of ilium	2	4.5
Adhesions band	2	4.5
Appendicitis	1	2.3
Appendicular lump and iatrogenic cecal perforation	2	4.5
Constricting mass at level of mid rectum	2	4.5
Foreign body	1	2.3
Hard mass at jejunum	1	2.3
Intraluminal bolus	2	4.5
Intussusception	2	4.5
Intussusception and mass in descending colon	2	4.5
Mass at descending colon	1	2.3
Mass at recto sigmoid	2	4.5
Mass at rectum	1	2.3
Multiple nodules and stricture	2	4.5
Multiple strictures	2	4.5
Omental band	10	22.7
Paraumbilical hernia irreversible	1	2.3
Puss and bowel adhesions	1	2.3
Puss with perforation	3	6.8
Stricture	1	2.3
Stricture at distal ilium	1	2.3
Thicken gut and fibrotic mass at cecum	1	2.3
Total	44	100.0

According to the association between radiological and intraoperative findings the omental bands were associated with a wide range of radiological patterns, including air-fluid levels with valvulae conniventes and featureless loops ($p=0.001$). Additionally, intussusception was linked to air-fluid levels with valvulae conniventes and ilium loop. Other findings, such as adhesions, strictures, and masses, were associated with less common radiological features. Overall, the statistical significance of the associations ($p=0.001$) highlights the relevance of radiological findings in guiding operative diagnoses. (Table IV)

Furthermore, there was a statistically significant association was found between radiological and surgical levels ($p=0.001$), highlighting the relevance of radiological findings in predicting surgical locations. (Table V)

Table III: Association between clinical findings and operative findings. (n=44)

OPERATIVE FINDINGS	Clinical presentation/physical examination									
	Constipation	IGS	Tenderness	Vomiting /nausea	Anorexia	Weight loss	Abdominal distension	Hyperactive or	ABS	
Adhesion at ilium and appendicitis	1	0	1 0	0	1	1 0	0	1	0	1
Adhesions at junction of ilium	2	0	2 0	0	2	2 0	0	2	0	2
Adhesions band	2	0	2 0	0	2	2 0	0	2	0	0
Appendicitis	0	1	1 0	1	0	1 0	0	1	1	0
Appendicular lump and iatrogenic cecal perforation	2	0	2 0	2	0	2 0	2	0	2	0
Constricting mass at level of mid rectum	2	0	2 0	0	2	2 0	2	0	2	0
Foreign body	1	0	1 0	0	1	1 0	0	1	1	0
Hard mass at jejunum	1	0	1 0	0	1	1 0	0	1	0	1
Intraluminal bolus	2	0	2 0	0	2	2 0	0	2	2	0
Intussusception	2	0	2 0	0	2	2 0	0	2	2	0
Intussusception and mass in descending colon	2	0	2 0	0	2	0 2	2 0	2	0	2
Mass at descending colon	1	0	1 0	0	1	0 1	1 0	1	0	1
Mass at recto sigmoid	2	0	2 0	0	2	2 0	2 0	2	0	2
Mass at rectum	1	0	1 0	0	1	1 0	1 0	1	0	1
Multiple nodules and stricture	2	0	2 0	2	0	2 0	0 2	2 0	2	0
Multiple strictures	2	0	2 0	2	0	2 0	0 2	2 0	0	2
Omental band	9	1	9 1	2	8	9 1	0 10	0 10	10	0
Paraumbilical hernia irreversible	1	0	1 0	0	1	1 0	0 1	0 1	1	0
Puss and bowel adhesions	1	0	1 0	1	0	1 0	1 0	1 0	1	0
Puss with perforation	3	0	3 0	2	1	3 0	3 0	3 0	3	0
Strictures	1	0	1 0	1	0	1 0	1 0	1 0	1	0
Stricture at distal ilium	1	0	1 0	1	0	1 0	0 1	1 0	0	1
Thicken gut and fibrotic mass at cecum	1	0	1 0	1	0	1 0	1 0	1 0	0	1
Total	42	02	43 1	15	29	40 4	16 28	22 22	44	0
p-value	0.387		1.00	0.004		0.060	0.004	0.055	1.00	0.010

Table IV: Association between radiological findings and operative findings. (n=44)

OPERATIVE FINDINGS	RADIOLOGICAL FINDINGS								p-value
	VC	Hastration, air in cecum	dilated cecum	AFL, VC,	AFL, ilium	AFL, loop	AFL, Hastration	AFL, VC, FL	
				Hastration,	VC,	AFL, loop	Hastration	VC, ground appear	
Adhesion at ilium and appendicitis	0	0	0	0	0	0	0	1	0
Adhesions at junction of ilium	0	0	0	2	0	0	0	0	0
Adhesions band	0	0	0	2	0	0	0	0	0
Appendicitis	0	0	0	1	0	0	0	0	1
Appendicular lump and iatrogenic cecal perforation	0	0	0	0	2	0	0	0	2
Constricting mass at level of mid rectum	0	2	0	0	0	0	0	0	2
Foreign body	0	0	0	1	0	0	0	0	1
Hard mass at jejunum	0	0	0	1	0	0	0	0	1
Intraluminal bolus	0	0	0	2	0	0	0	0	2
Intussusception	0	0	0	2	0	0	0	0	2
Intussusception and mass in descending colon	0	0	2	0	0	0	0	0	2
Mass at descending colon	0	0	0	0	0	1	0	0	1
Mass at recto sigmoid	0	0	0	0	0	2	0	0	2
Mass at rectum	0	0	0	0	0	1	0	0	1
Multiple nodules and stricture	0	0	0	2	0	0	0	0	2
Multiple strictures	0	0	0	2	0	0	0	0	2
Omental band	2	0	0	4	2	0	2	0	10
Paraumbilical hernia irreversible	0	0	0	1	0	0	0	0	1
Puss and bowel adhesions	0	0	0	1	0	0	0	0	1
Puss with perforation	0	0	0	1	0	0	2	0	3
Strictures	0	0	0	1	0	0	0	0	1
Stricture at distal ilium	0	0	0	0	0	0	1	0	1
Thicken gut and fibrotic mass at cecum	0	0	0	0	0	0	0	1	1
Total	2	2	2	23	4	4	6	1	44

Table V: Association of radiological level with surgical level. (n=44)

Radiological level	Surgical level						p-value
	Small bowel	Large bowel	Jejunum	Ileum	Rectum	Anal canal	
Small bowel	12	0	1	5	0	0	18
	27.3%	0.0%	2.3%	11.4%	0.0%	0.0%	40.9%
Large bowel	0	3	0	0	2	0	5
	0.0%	6.8%	0.0%	0.0%	4.5%	0.0%	11.4%
Descending colon	0	1	0	0	0	0	1
	0.0%	2.3%	0.0%	0.0%	0.0%	0.0%	2.3%
Jejunum	1	0	0	2	0	0	3
	2.3%	0.0%	0.0%	4.5%	0.0%	0.0%	6.8%
Ileum	8	0	0	6	0	0	14
	18.2%	0.0%	0.0%	13.6%	0.0%	0.0%	31.8%
Rectum	0	2	0	0	0	0	2
	0.0%	4.5%	0.0%	0.0%	0.0%	0.0%	4.5%
Anal canal	0	0	0	0	0	1	1
	0.0%	0.0%	0.0%	0.0%	0.0%	2.3%	2.3%
Total	21	6	1	13	2	1	44
	47.7%	13.6%	2.3%	29.5%	4.5%	2.3%	100.0%

Discussion

Intestinal obstruction is a disorder in which the usual movement of digestive materials through the intestines is disrupted, resulting in a variety of symptoms and possible problems. This obstruction can occur in either the small or large intestine (colon) and may be caused by a variety of underlying conditions. Clinical diagnosis, together with radiological diagnosis, is critical in establishing the level of intestinal obstruction and guiding later surgical procedures. This study has been done to evaluate the association between the clinical findings and radiological findings with surgical findings in patients with intestinal obstruction and the subsequent determination of the level and severity of the obstruction, on 44 patients with an overall mean age of 38.59 ± 7.77 years and slightly male predominance 56.8%. In the comparison of this study Jena SS et al² showed a higher mean age of the patients 50.1 years compared to this study, while consistently like this study they found males in majority 57.7% compared to female 42.3%. In the study by Sharif et al¹³ also reported that the 59.2% were males and 40.8% were females. According to another study by Jang Y et al¹⁴ also reported that the median age of the patients was 57 years, male predominance 63.6%. Male predominance was observed in all studies, may due to additional risk factors such as smoking and alcohol consumption compared to women, while variation in the mean age of patients between our study and others could be attributed to differences in sample size and selection criteria.

In this study the most common clinical findings were inability to pass gas or stool (97.7%), constipation (95.5%), dehydration (93.2%), and tachycardia (93.2%). Other frequent symptoms included vomiting/nausea

(90.9%), weight loss (50.0%), and hyperactive/absent bowel sounds (56.8%). Radiologically, the most common finding was air-fluid levels with valvulae conniventes (52.3%), with other findings like hastration, dilated cecum, and featureless loops observed in fewer cases. In aligns to this study Gogineni JC et al¹⁵ reported that the among 50mcases distension was present in 90%, scars were in 24% of cases, no patients had visible peristalsis, and 12% had visible hernias, on the palpation, abdominal tenderness was in 96% of patients, guarding in 72%, and rigidity in 12%, decreased bowel sounds were in 26%, and absent bowel sounds were in 38% of the cases and radiologically they found multiple air-fluid levels in the small bowel were observed in 80% of cases, while multiple air-fluid levels in the large bowel were seen in 18%.¹⁵ In aligns to this study Vaishnani BV et al¹⁶ also reported that the all of the patients had abdominal pain and tenderness, with 80% experiencing vomiting and 58% reporting constipation, a lump was noted in only 6% of the patients, while rebound tenderness was observed in 18%, guarding in 38%, rigidity in 28%, and distension in 48%. CT scan results revealed free air in 2% of patients, a transition point in 42%, complete obstruction in 28%, a closed loop in 2%, free fluid in 78%, and partial obstruction in 72%.¹⁶ Consistently Islam MR et al¹⁷ also reported that the Abdominal tenderness was in all cases and abdominal pain was the most prevalent symptom 91.3%, followed by vomiting (72.8%), abdominal distension (69.9%), absolute constipation (12.6%), and relative constipation (63.1%).

In this study most common operative finding was an omental band (22.7%), followed by pus with perforation (6.8%). Adhesions, masses, strictures, and intussusception each accounted for smaller portions, with frequencies ranging from 2.3% to 4.5%. Other less

frequent findings included foreign bodies, appendicitis, and hernias. Comparatively Lad V et al¹⁸ reported that the most frequent cause of intestinal obstruction was postoperative adhesions in 44% of cases, followed by Koch's abdomen 30%, malignancy 12% case, while obstructed hernia was 10%, intussusception occurred in 6% cases, and gut malrotation was identified in 1 case. In the study by Zia LA et al¹³ reported that the ileus secondary to volvulus was 19.2%, tumor 12.8%, sepsis was 31.2%, Hernias 11.2%, ileus due to ileal gangrene 7.2%, 6.8% fecal impaction, ileal strictures 6.8%, and adhesions were in 3.6% of the cases.

In this study on the association between clinical findings and intraoperative findings the most common clinical symptoms, such as constipation (95.5%), inability to pass gas or stool (97.7%), and vomiting/nausea (90.9%), were present across various intraoperative diagnoses. Notably, tenderness and anorexia were significantly associated with multiple findings, including omental bands and strictures ($p=0.004$). Hyperactive or absent bowel sounds and weight loss showed a weaker association with some findings, such as adhesions and masses ($p=0.010$ and $p=0.055$, respectively). Other symptoms, like constipation and inability to pass stool, showed no significant association ($p=0.387$ and $p=1.00$).

In this study on the association between radiological and intraoperative findings the omental bands were associated with a wide range of radiological patterns, including air-fluid levels with valvulae conniventes and featureless loops ($p=0.001$). Additionally, intussusception was linked to air-fluid levels with valvulae conniventes and ilium loop. Other findings, such as adhesions, strictures, and masses, were associated with less common radiological features. Overall, the statistical significance of the associations ($p=0.001$) highlights the relevance of radiological findings in guiding operative diagnoses. Furthermore there was a statistically significant association was found between radiological and surgical levels ($p=0.001$), highlighting the relevance of radiological findings in predicting surgical locations. In aligns this study Madhwapathy NS et al¹⁹ reported that among 84% of patients, the intraoperative findings matched the radiological findings, while in 20% of cases, there was no correlation between these findings. Consistently Pundeer S et al¹⁰ also found adhesions and bands found as cause of intestinal obstruction intraoperatively. The most frequent observation on plain abdominal X-rays was dilated gut loops (82%). Ultrasound (USG) of the abdomen had limited diagnostic

utility in intestinal obstruction cases, with small bowel obstruction being the most common finding (62%). However, in their study, CT scans of the abdomen provided more detailed information; aiding surgeons in better understanding the underlying pathology.¹⁰ In an other study by Ali MZ et al²⁰ also demonstrated that the X-rays are more diagnostically useful in cases of hollow viscus perforation and intestinal obstruction, while ultrasonography has a diagnostic rate of 64.3%. Ultrasonography accurately identified acute appendicitis in 74.2% of cases, hollow viscus perforation in 50%, and intestinal obstruction in 60% of patients. When compared to intraoperative findings, clinical accuracy reached 95%. Arora B et al²¹ also observed that there was a 89.6% clinical accuracy was, which exceeded radiological accuracy, demonstrating that medical opinion is extremely more accurate for detecting acute abdomen. Furthermore Singh S et al²² plain X-rays and ultrasonography are valuable tools for diagnosing acute abdominal emergencies. They are cost-effective, non-invasive, fast, reliable, and highly accurate in identifying the exact cause and source of pain in patients with acute abdomen.²² Nevertheless, considering the significant limitations of the study, such as very limited sample size and possible discrepancies in selecting participants and data collection, the results should be regarded with carefully. The results of the study, while suggestive, do not provide conclusive evidence about the such relationships. Further large investigations with varied patient populations are needed to validate these findings and give more convincing proof. Future subsequent studies could potentially enhance diagnostic and therapeutic techniques, enhancing overall management of intestinal obstruction

Conclusion

Study revealed a significant correlation between clinical, radiological, and surgical findings in patients with intestinal obstruction, aiding in the determination of the level of obstruction. Clinically, inability to pass gas or stool, constipation, dehydration, and vomiting/nausea were the most common symptoms, with tenderness and anorexia significantly linked to omental bands and strictures. Radiologically, air-fluid levels with valvulae conniventes were the most common findings, correlating with intraoperative diagnoses like omental bands and intussusception. However, due to several limitations and the small sample size, the findings cannot be considered conclusive. Therefore, further large-scale studies are recommended to validate the results.

References

- Jackson P, Cruz MV. Intestinal obstruction: evaluation and management. *Am Fam Physician*. 2018 Sep 15;98(6):362-7.
- Jena SS, Obili RC, Das SA, Ray S, Yadav A, Mehta NN, Nundy S. Intestinal obstruction in a tertiary care centre in India: Are the differences with the western experience becoming less?. *Ann Med Surg (Lond)*. 2021 Dec;72:103125. [doi: 10.1016/j.amsu.2021.103125](https://doi.org/10.1016/j.amsu.2021.103125)
- Chen XZ, Wei T, Jiang K, Yang K, Zhang B, Chen ZX, et al. Etiological factors and mortality of acute intestinal obstruction: a review of 705 cases. *Zhong Xi Yi Jie He Xue Bao*. 2008;6(10):1010-6. [doi: 10.3736/jccim20081005](https://doi.org/10.3736/jccim20081005)
- Koşar MN, Görgülü Ö. Incidence and mortality results of intestinal obstruction in geriatric and adult patients: 10 years retrospective analysis. *Turk J Surg*. 2021 Dec;37(4):363. doi: 10.47717/turkjsurg.2021
- Görgülü Ö, Koşar MN. The effects of comorbidity factors on the prognosis in geriatric sepsis patients in the intensive care unit. *Med Sci*. 2021;10(1):31-5.
- Derseh T, Dingeta T, Yusouf M, Minuye B. Clinical outcome and predictors of intestinal obstruction surgery in Ethiopia: A cross-sectional study. *Biomed Res Int*. 2020 Nov 23;2020:1-7. doi: [10.1155/2020/7826519](https://doi.org/10.1155/2020/7826519)
- Shida D, Tagawa K, Inada K, et al. Modified enhanced recovery after surgery (ERAS) protocols for patients with obstructive colorectal cancer. *BMC Surg*. 2017;17(1):1-6.
- Tsegaye S, Osman M, Bekele A. Surgically treated acute abdomen at Gondar University Hospital, Ethiopia. *East Cent Afr J Surg*. 2007;12(1):53-7.
- Jackson PG, Raiji M. Evaluation and management of intestinal obstruction. *Am Fam Physician*. 2011 Jan 15;83(2):159-65.
- Pundeer S, Brahmbhatt H, Bali S, Sodhi TP, Goyal KS. Correlation of clinical findings with radiological and intraoperative findings in cases of intestinal obstruction. *J Evol Med Dent Sci*. 2020 Mar 9;9(10):736-41. [DOI: 10.14260/jemds/2020/160](https://doi.org/10.14260/jemds/2020/160)
- Nelms DW, Kann BR. Imaging modalities for evaluation of intestinal obstruction. *Clin Colon Rectal Surg*. 2021 Jul;34(4):205-18.
- Pundeer S, Brahmbhatt H, Bali S, et al. Correlation of clinical findings with radiological and intraoperative findings in cases of intestinal obstruction. *J Evol Med Dent Sci*. 2020;9(10):736-40.
- Sharif A, Akhtar T, Zia N. Intestinal obstruction-etiological and treatment outcome. *Journal of Rawalpindi Medical College*. 2015 Dec 30;19(3):215-219.
- Jang Y, Jung SM, Heo TG, Choi PW, Kim JI, Jung SW, et al. Determining the etiology of small bowel obstruction in patients without intraabdominal operative history: a retrospective study. *Ann Coloproctol*. 2022 Dec;38(6):423. DOI: [10.3393/ac.2021.00710.0101](https://doi.org/10.3393/ac.2021.00710.0101)
- Gogineni JC, Tonape T, Athavale VS, Kumar S, Kutty SA, Sri Likhita K. A clinical study on the surgical management of intestinal obstruction. *Int Surg J*. 2020;7:150-6. DOI: [10.18203/2349-2902.isj20195961](https://doi.org/10.18203/2349-2902.isj20195961)
- Vaishnani BV, Dudhwala MFG. Clinical study on role of CECT abdomen in intestinal obstruction. *Int J Res Med Sci*. 2019;7:967-71. <https://doi.org/10.18203/2320-6012.ijrms20191296>
- Islam MR, Habib MA, Rahman MM, Fatin J, Saha BK. Etiology of intestinal obstruction: correlation between pre-operative and per-operative findings with histopathology. *SAS J Surg*. 2024 Jan;1:82-9. DOI: [10.36347/sasjs.2024.v10i01.015](https://doi.org/10.36347/sasjs.2024.v10i01.015)
- Lad V, Bochiya G, Tailor V. Surgical management of acute intestinal obstruction study of 50 cases operated in emergency. *Int Surg J*. 2023 Mar 31;10(4):569-73.
- Madhwapathy NS, Janugade HB, Katkar A. Intestinal obstruction, a correlation between operative and radiological findings. *Int J Health Sci*. 2022;1:8307-13.
- Ali MZ, Maddu VK. Comparative analysis of clinical, radiological and operative findings in acute abdomen. *Int Surg J*. 2019 Feb 25;6(3):806-11. <https://doi.org/10.18203/2349-2902.isj20190549>
- Arora B, Gupta A, Nandi S, Sarwal A, Goyal P, Gogna S, et al. Comparative analysis of clinical, radiological and operative findings in acute abdomen. *Int J Enhanc Res Med Dent Care*. 2015;2:3-6.
- Singh S, Kumar A, Singh NP, Sidhu V. Comparative analysis of clinical, radiological and operative findings in acute abdomen cases. *Eur J Mol Clin Med*. 2021 Jan 30;8(3):3393-402. <https://doi.org/10.18203/2349-2902.isj20190549>