

Systematic Review

Outcomes of Immediately & Conventionally Loaded Dental Implants

Nabbiya Noor¹, Zainab Ilyas¹, Bilal Ahmed¹, Ahmad Shoaib¹, Nida Fatima², Harris Saeed³

¹ Department of Prosthodontics, School of Dentistry, SZABMU, Islamabad, Pakistan

² Department of Oral Medicine, School of Dentistry, SZABMU, Islamabad, Pakistan

³ Department of Operative Dentistry, SOD, SZABMU, Islamabad, Pakistan

Author's Contribution
¹ Substantial contributions to the conception or design of the work; or the acquisition, ¹ Final approval of the study to be published/supervision, ² Active participation in active methodology, ² analysis, or interpretation of data for the work, ³ Drafting the work or revising it critically for important intellectual content
Funding Source: None
Conflict of Interest: None
Received: Nov 28, 2023
Accepted: Feb 09, 2024
Address of Correspondent
Prof. Bilal Ahmed Professor & HOD, Department of Prosthodontics, School of Dentistry, Shaheed Zulfiqar Ali Bhutto Medical University, Ravi Road, G8/3, Islamabad, Pakistan. drbilalhamed79@hotmail.com

ABSTRACT
Clinical dentistry has been subjected to a revolution by introduction of "Osseo integrated" dental implants. New trends have always been of keen interest in "implant prosthodontics". The aim behind this systematic review was to compare & assimilate the outcomes of "immediately" & "conventionally" loaded dental implant prosthesis. A thorough electronic search was conducted on PubMed, Science Direct, and Research Gate to find pertinent scientific publications published between 2000 and 2021 in order to fulfil the aforementioned goal. Six published papers were considered and chosen for this project after being carefully examined to ensure they matched the eligibility requirements. Regarding the results, there was no discernible difference in the implant groups that were loaded "immediately" and "conventionally" in terms of success. As long as immediately loaded implants exhibited considerable primary stability, there was no discernible difference between the two groups in terms of marginal bone levels, masticatory efficiency, bleeding on probing, implant stability quotients, or peri-implant soft tissue shapes. In selected patients "immediate loading protocol" can successfully & predictably be practiced ensuring that adequate "primary implant stability" has been achieved.
Key words: Immediate loading, conventional loading, comparison, survival Cochrane.
Review number: COCHRANEPAHHS-2022-00152

Cite this article as: Noor N, Ilyas Z, Ahmed B, Shoaib A, Fatima N, Saeed H. Outcomes of Immediately & Conventionally Loaded Dental Implants. Ann Pak Inst Med Sci. 2024; 21(2):130-137. doi: 10.48036/apims.v20i2.915.

Introduction

Clinical dentistry has been subjected to a revolution by introduction of "Osseo integrated" dental implants. Primary implant stability at time of introduction in the bone & following its loading is a rudimental prerequisite for successful implant treatment.¹

To minimize the risk of implant loss, it has been the practice for many years to keep the implant submerged for a period of 03-06 months for optimum osseointegration to occur.² Concerns regarding prolonged duration of treatment were raised; devising the protocol of immediate loading with provisional prosthesis at time of surgical intervention. Howbeit using such protocol, fibrous encapsulation of implants was reported which ultimately culminated in implant failure³. Later advancements in

implant characteristics & surgical techniques led to indication that immediate loading protocol can be successful.⁴⁻⁶

The concept of "immediate loading (IL)" has earned popularity recently on account of several variables such as reduced treatment duration & trauma along with psychological & aesthetic felicity to subjects. To add more, "IL protocol" maintains peri-implant soft tissues' height & enhanced bone quality & density in implant vicinity.⁷ Initial stability of implant inserted via "IL protocol" is of paramount importance & influenced by several contributing factors such as implant topography, splinting, bone quality, control of occlusal load & lack of evidence of detrimental patient habits. Success rate of 95-

100% has been reported with “IL” protocol by several studies.⁸⁻¹⁰

The aim behind design of current systematic review was to compare & assimilate the success outcomes of immediately versus conventionally loaded implants. There is no remarkable difference in outcome rates between “immediate” & “conventional loading” protocols in view of previously conducted studies.

Methodology

PRISMA statement was applied on the methodology of this quantitative study. PICOS format was used to structure the question serving for relevant literature search as described in table I.

Table 1: PICOS Search Strategy

“P= Population”	Human subjects with stable dental implants
“I= Intervention”	Immediate loading of dental implants
“C= Comparison”	Conventional loading of dental implants
“O= Outcomes”	Masticatory efficiency, Mucogingival junction contours (MGJ), implant stability quotient (ISQ), bleeding on probing & marginal bone loss (MBL)
“S= Study design”	Randomized control trials (RCTs) & Prospective cohort studies

A detailed online search for available literature was conducted in international databases such as PubMed, Research gate, and Science Direct, between 2000 to 2021. “MeSH” words used for relevant literature search were “comparison”, “contrast”, “difference”, “immediate loading”, “conventional loading” & “dental implants”. The “Boolean terms” used for search were “and”, “versus” & “or”.

Inclusion Criteria:

- Studies on human subjects
- Literature published in English only
- Randomized control trials (RCTs)
- Prospective Cohort studies

Exclusion Criteria:

- Invitro/ animal studies
- Literature published in other languages

- Case series/ case reports/review articles
- Co-morbidities (metabolic/ physical disorders)
- Smoking/alcoholism/ drug abuse

The process of study recruitment was done in two rounds by authors N.N & Z.I in each round. The decision of third investigator B.A was considered final in case of disagreement between two primary authors. Titles /abstracts of the articles were reviewed in this first round. After removal of duplications, nine hundred & ninety three articles were retrieved from afore mentioned databases. After screening twenty two articles were considered for further scrutiny. These articles were subjected to afore mentioned exclusion & inclusion criteria; yielding 13 articles for full text analysis. After reviewing full text literature in round two, 6 articles were finally considered for this systematic review considering that appropriate information regarding the comparison of immediate & conventionally loaded dental implants was provided.

Following the search of initial literature, relevance of present study was assessed by reviewing titles & abstract of retrieved articles. After which, the complete texts of the included articles were subjected to assessment for detailed scrutiny.

Results

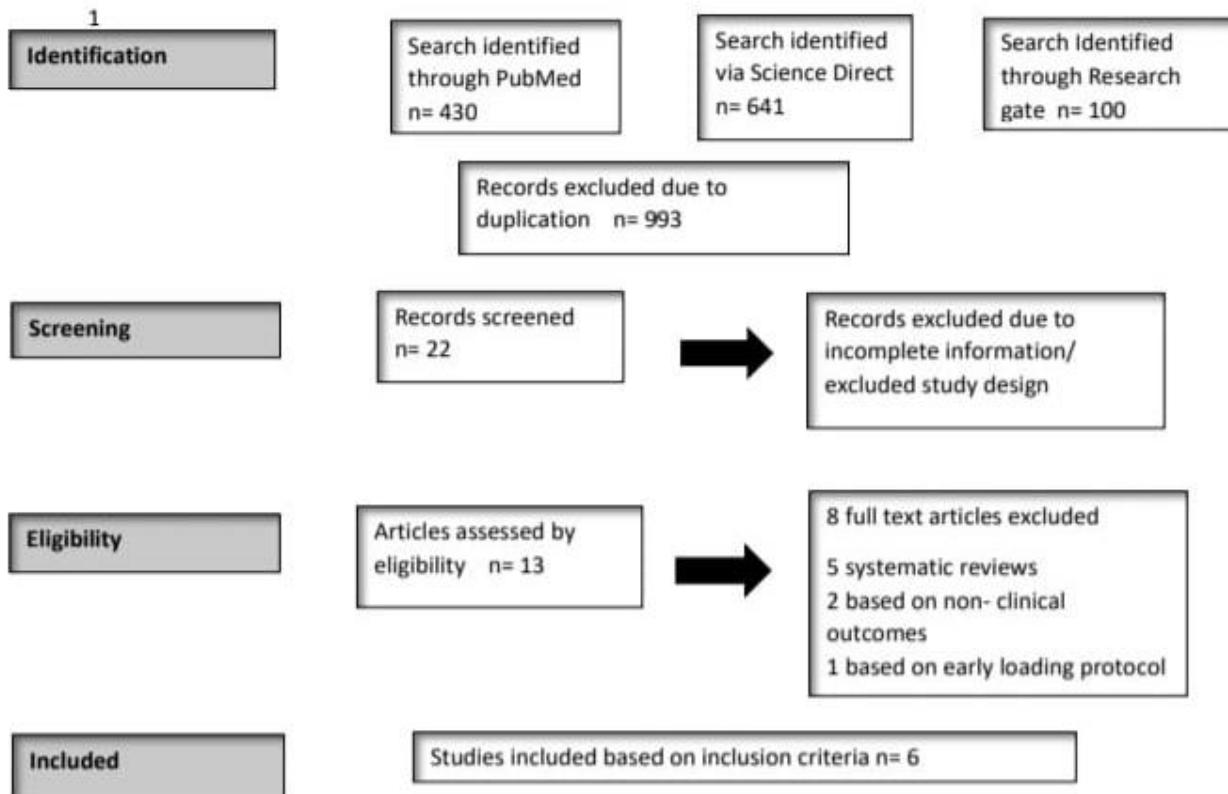

Quality Assessment of finalized studies

Table III depicts the quality assessment of the selected researches done independently by two researchers (N.N & Z.I). Risk of bias was evaluated by applying “Cochrane collaboration tool” on selected studies. The shortlisted studies were assessed according to recommended tools by the investigators (N.N & Z.I); considering an average value of each question as a final answer.

After detailed scrutiny & application of exclusion & inclusion criteria, six studies were finalized for this systematic review. PRISMA flow diagram following 2009 guidelines (Figure 1) shows the criteria followed for recruiting the shortlisted studies.

Characteristics of selected studies:

Table IV shows the attributes of studies shortlisted in current systematic review. The total number of dental implants installed in 6 RCTs was 491. The number of subjects in these studies fell in range of 15 to 60 & total subjects were 174. The selected subjects’ age range fell in between 25-71 years. The time period of follow-up in selected studies ranged from 12-120 months.

Figure 1: PRISMA flow diagram highlighting study

mandibular molar region) & Daher et al (maxillary premolar & molar region).^{13,14,15}

Table II: Quality assessment of selected studies using Cochrane tool for risk assessment where "+" shows low bias, "-" shows high bias risk & "?" shows unclear bias.

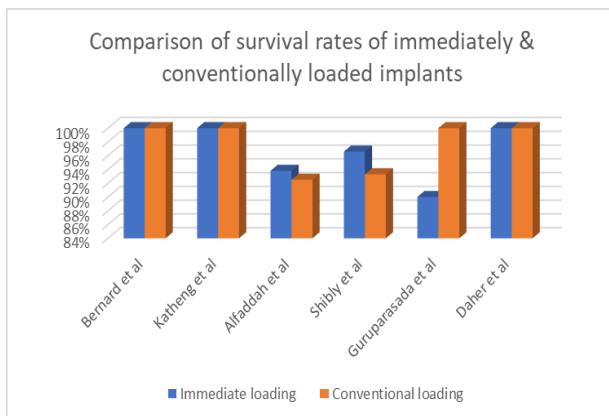
	Bernard et al 2019	Katheng et al 2021	Alfadda et al 2019	Shibly et al 2010	Guruparasada et al 2012	Daher et al 2020
Random sequence generation	+	+	+	+	+	+
Allocation Concealment	-	+	+	+	-	+
Blinding of participants & personnel	-	-	-	+	-	-
Blinding of outcome assessment	?	?	+	+	-	+
Incomplete outcome data	+	+	+	+	+	+
Selective reporting	+	+	+	+	+	+
Other bias	?	?	?	?	?	?

selection & screening process

“Immediate implant” insertion in fresh extraction sites was carried out in only one study¹¹; remaining studies utilized healed sockets. All surgeries involved intraoperative flap raising protocol except the one conducted by Bernard et al. The implant brand employed commonly in finalized studies was “Nobel Biocare.”^{11,13-15} Only three studies mentioned the exact location of placed implants i-e Alfadda et al (interforamen region), Guruparasada et al (1st

The healing period followed for conventional loading protocol was 3-6 months after which implants were subjected to definitive loading. In three of the short listed studies, implants in “IL group” were subjected to load at the time of surgery while in other 3 studies, loading was delayed until 48-72 hours. Minimum insertion torque for implant installation was 10-35 Ncm. Only one study measured implant stability quotient (ISQ) of > 60 for 80%

Table III Characteristics of the studies selected.


Authors (years)	Loading protocol	Follow up period (months)	No. of participants	Gender (male/ female)	Age Range (years)	Region	No. of drop- outs	Implant number/ Brand of implants	Implant size (Diameter & length in mm)
Bernard et al (2019)	Conventional Immediate	24	8 7	7/1 5/2	49-70 45-71	Maxilla	0	90 Ankylos; Dentsply Sirona	3.5-5.5 9.5-14
Ketheng et al (2021)	Conventional Immediate	60	9 10	3/6 6/4	66.1 69.2	Mandible	6	38 Nobel Speedy Groovy RP	4 10-18
Alfaddah et al (2019)	Conventional Immediate	120	22 20	11/11 7/13	61.1-61.5 61.3-60.6	Interforamen region	8	168 Nobel Biocare	3.30-4.00 10-15
Shibly et al (2012)	Conventional Immediate	12	30 30	25/35	25-94	Maxilla/Mandible	5	55 Nobel Biocare	4.3-5 10-13
Guruparasada et al (2013)	Conventional Immediate	12	10 10	NR	25-50	1 st mandibular molar	0	20 Nobel Biocare	3.5-4.3 10-13
Daher et al (2021)	Conventional Immediate	12	18 (split mouth technique)	7/11	34-67	Maxillary posteriors	8	120 Nobel Biocare	3.5-5 10-15

of immediately & 71.7% for conventionally loaded implants.¹³⁻¹⁵ All included studies made use of antibiotics & chlorhexidine mouth rinses following implant surgery while Alfadda et al & Guruparasada et al mentioned the use of pre-operative antibiotics as well.¹³⁻¹⁴

Measures of outcome assessment:

Four studies measured marginal bone level changes while one of them (Shibly et al) also took into account, the contour of mucogingival junction (MGJ); which was relocated to the coronal aspect in 65% implant sites in conventionally loaded group as compared to immediately loaded group which was 15%. Bernard et al also took into account the bleeding on probing which was almost same in both the groups. Guruparasada et al also measured the health of peri-implant soft tissue via “Gingival index (G.I)”, “Plaque index (P.I)” & “Calculus Index (C.I)” which was

same in both the groups. The radiographs used for this purpose by Alfaddah et al, Shibly et al & Bernard et al were standardized periapical views. While Guruparasada reported using panoramic radiographs in addition to periapical views. Marginal bone loss (MBL) ranged from 0.06 to 1.15 mm. Katheng et al measured the outcomes via masticatory performance (M.P), using color changeable chewing gum & gummy jelly test which showed no significant difference in both groups. On the other hand Daher et al took into account the implant stability quotient to measure radiofrequency analysis of loaded implants via Osstell (Osstell AB, Gothenburg, Sweden) where ISQ ranged from 67.9 to 71.7 at 12 months follow-up.¹¹⁻¹⁵ Figure 2 shows implant survival rates of immediately & conventionally loaded implants

Figure 2. Implant survival rates of immediate vs conventionally loaded implants.

Discussion

The systematic reviews that undertake “RCTs” to analyze their results, show high level of scientific validation to answer a clinical query as risk of bias is likely to be high in non-randomized clinical trials.¹⁷⁻¹⁹ For present systematic review six RCTs comparing the results of immediately versus conventionally loaded implants were selected.

“IL protocol” has significant survival rate, reduces the treatment span & is associated with definite patient benefit. Undoubtedly conventional loading protocol had been in use for so many years, dictating the fact that higher scientific evidence is available for this protocol as compared to “IL protocol”. Howbeit a longitudinal prospective study on “IL protocol” showed commendable improvement in life quality & patient satisfaction after implant placement.²⁰⁻²²

Previous publications have shown that primary stability has a pivotal role in success of “IL protocol”; diminished initial stability being a key factor in early implant failure. In contrast, another publication revealed a high final success rate of implants loaded immediately subjected to low insertion torques i.e. $< 25 \text{ N-cm}$ ²³⁻³⁰ Hence, ideal value of insertion torque dictating successful osseointegration still needs to be set by conducting further investigations.

In current systematic review, two of the shortlisted studies used non-functional “IL- protocol”¹⁴⁻¹⁵. This is attributed to the fact that undue stress at bone-implant interface & subsequent implant failure might occur when implant is subject to load beyond bearing capacity of peri-implant bone. Micromotion below certain threshold can be tolerated at this interface. Howbeit biomechanics at interface of bone-implant should be paid special

importance to decrease the load on implant & the prosthesis it supports.³⁰⁻³³

Implant micromotion can also be reduced by altering surface attributes of implants. Implant surface characteristics potentiates the generation of lamellar bone & enhances implant-bone contact which in turns favors the “IL protocol”. Surface conditioning of implant can be utilized as a compensation of risk of “IL protocol”³⁴⁻³⁶. In contrast another study revealed that implant stability is more critical to design rather than surface characteristics of implants. Primary implant stability improved when implant length was decreased & width of implants was enhanced.³⁷⁻⁴⁰

All six shortlisted studies, revealed no statistically remarkable difference between two loading protocols. Reported implant losses in selected studies, occurred within 03 months of healing period; therefore they can be labelled as “early implant loss.”⁴¹⁻⁴⁴

“IL protocol” when used rationally, may have an additive effect on marginal bone levels. The initial implant stability reduces 3-6 weeks following insertion due to osseous remodeling; strain during this period can be minimized by implant splinting & by reducing the occlusal loads. Strain in balanced amounts is responsible for exciting osteocytes, contributing to development of increased bone to implant contact area & well-organized osteological configuration.⁴⁵⁻⁴⁶ Bone loss in implant vicinity can be contributed by multitude of factors such as surgeon’s skills, bone type, type of implant used & patient centered factors.⁴⁷⁻⁵⁰

Conclusion

Upshots of this systematic review reveal that advancements in implant characteristics have led to successful implant placement & outcomes using “IL protocol”. Regardless of the site of implant placement (maxilla or mandible) & assessment of bone quality & density, all studies revealed considerably high success rates for “IL protocol” which was comparable to that of conventionally loaded group. Thus in suitable patients, “IL protocol” can predictably be achieved depending on expertise & experience of clinician. Howbeit, primary/initial implant stability is a basic pre-requisite for successful outcome & should be taken into account while opting “IL protocol”.

Acknowledgements: The authors are highly indebted to the invaluable contribution of

1. Dr. Shakeel Kazmi (HOD Oral Biology, School of Dentistry, Islamabad)
2. Dr. Ayesha Fazal (Department of Community Dentistry, School of Dentistry, Islamabad)

References

1. Romanos GE. Surgical and prosthetic concepts for predictable immediate loading of oral implants. *J Calif Dent Assoc.* 2004 Dec;32(12):991-1001. PMID: 15715376. <https://doi.org/10.1080/19424396.2004.12224051>
2. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. *Int J Oral Surg* 1981; 10: 387- 416. [https://doi.org/10.1016/S0300-9785\(81\)80077-4](https://doi.org/10.1016/S0300-9785(81)80077-4)
3. Kang DW, Kim SH, Choi YH, Kim YK. Repeated failure of implants at the same site: a retrospective clinical study. *Maxillofac Plast Reconstr Surg.* 2019 Jul 10;41(1):27. <https://doi.org/10.1186/s40902-019-0209-1>
4. Rai S, Rai A, Kumar T, Kumari M, Somanna MK, Bandgar S. Immediately Loaded Single Unit Dental Implants: A Clinical Study. *J Pharm Bioallied Sci.* 2020 Aug;12(Suppl 1):S245-S253. https://doi.org/10.4103/jpbs.JPBS_72_20
5. Del Giudice R, Piattelli A, Grande NM, Cataneo E, Crispino A, Petrini M. Implant insertion torque value in immediate loading: A retrospective study. *Med Oral Patol Oral Cir Bucal.* 2019 May 1;24(3):e398-e403. <https://doi.org/10.4317/medoral.22845>
6. Ribeiro FS, Pontes AEF, Marcantonio E, Piattelli A, Marcantonio E Jr. Success rate of immediate nonfunctional loaded single tooth implants: immediate versus delayed implantation. *Implant Dent* 2008; 17: 109- 17. <https://doi.org/10.1097/ID.0b013e318166cb84>
7. Chaushu G, Chaushu S, Tzohar A, Dayan D. Immediate loading of single tooth implants: immediate versus non-immediate implantation. A clinical report. *Int J Oral Maxillofac Implants* 2001; 16: 267- 72.
8. Nagay BE, Dini C, Borges GA, Mesquita MF, Cavalcanti YW, Magno MB, Maia LC, Barão VAR. Clinical efficacy of anodized dental implants for implant-supported prostheses after different loading protocols: A systematic review and meta-analysis. *Clin Oral Implants Res.* 2021 Sep;32(9):1021-1040. <https://doi.org/10.1111/cir.13813>
9. Schincaglia GP, Marzola R, Fazi G, Scapoli C, Scotti R. Replacement of mandibular molars with single-unit restorations supported by wide-body implants: immediate versus delayed loading. A randomized controlled study. *Int J Oral Maxillofac Implants* 2008; 23: 474- 80.
10. Jani M, Gaur V, Doshi AG, Patel K, Patka Ł. Clinically Based Classification and Positioning Indication for Single-Piece Compressive Implants Placement in Regard to Extraction Socket. *Healthcare (Basel)*. 2022 Mar 22;10(4):598. <https://doi.org/10.3390/healthcare10040598>
11. 11. Shibly O, Kutkut A, Patel N, Albandar JM. Immediate implants with immediate loading vs. conventional loading: 1-year randomized clinical trial. *Clin Implant Dent Relat Res.* 2012 Oct;14(5):663-71. <https://doi.org/10.1111/j.1708-8208.2010.00310.x>
12. Katheng et al. Masticatory performances & maximum occlusal forces of immediate & conventional loaded two implant supported overdentures retained by magnetic attachments: preliminary study of randomized controlled clinical trial. *International journal of implant dentistry* 2021. 7:57 <https://doi.org/10.1186/s40729-021-00342-x>
13. Alfadda et al. Immediate vs conventional loading of mandibular implant-supported fixed prosthesis in edentulous patients: 10 year report of a randomized controlled trial. *Int J Oral Implantol* 2019; 12(4): 431-446
14. Guruparasada et al. A comparative analysis of peri-implant bone levels of immediate & conventionally loaded implants. *Medical Journal Armed Forces India* 2013. 69: 41-47 <https://doi.org/10.1016/j.mjafi.2011.11.002>
15. Daher et al. Factors affecting implant stability quotients at immediately & conventionally loaded implants in the posterior maxilla: A split mouth randomized controlled trial. *Journal of Prosthodontics* 2021. 30: 590-603 <https://doi.org/10.1111/jopr.13296>
16. Bernard L, Vercruyssen M, Vanderveken J, Coucke W, Quirynen M, Naert I. Randomized controlled trial comparing immediate loading with conventional loading using cone-anchored implant-supported screw-retained removable prostheses: A 2-year follow-up clinical trial. *J Prosthet Dent.* 2019 Feb;121(2):258-264. <https://doi.org/10.1016/j.prosdent.2018.03.022>
17. Kokovic B, Jung R, Feloutzis A, Todorovic VS, Jurisic M, Hammerle CH. Immediate vs early loading SLA implants in the posterior mandible: 5 year results of randomized controlled trials. *Clin Oral Implants Res* 2014; 25: e114-9 <https://doi.org/10.1111/clr.12072>
18. Saravi BE, Putz M, Patzelt S, Alkalak A, Uelkuemen S, Boeker M. Marginal bone loss around oral implants supporting fixed versus removable prostheses: a systematic review. *Int J Implant Dent.* 2020 Jun 3;6(1):20. <https://doi.org/10.1186/s40729-020-00217-7>
19. Nobre MA, Salvado F, Nogueira P, Rocha E, Ilg P, Maló P. A Prognostic Model for the Outcome of Nobel Biocare Dental Implants with Peri-Implant Disease after One Year. *J Clin Med.* 2019 Sep 1;8(9):1352. <https://doi.org/10.3390/jcm8091352>
20. Romanos, G. E., C. G. Toh, C. H. Siar, D. Swaminathan, and A. H. Ong. Histologic and histomorphometric evaluation of peri-implant bone subjected to immediate loading: an experimental study with *Macaca fascicularis*. *Int J Oral Maxillofac Implants* 2002. 17:44-51.
21. Romanos, G. E., C. G. Toh, C. H. Siar, H. Wicht, H. Yacoob, and G. Nentwig. Bone-implant interface around titanium implants under different loading conditions: a histomorphometrical analysis in the *Macaca fascicularis* monkey. *J Periodontol* 2003. 74:1483-1490. <https://doi.org/10.1902/jop.2003.74.10.1483>
22. Attard, N. J., A. Laporte, D. Locker, and G. A. Zarb. A prospective study on immediate loading of implants with mandibular overdentures: patient-mediated and economic outcomes. *Int J Prosthodont* 2006. 19:67-73.

23. Esposito M, Grusovin M.G, Willings M, Coulthard P, Worthington H.V. Interventions for replacing missing teeth: different times for loading dental implants. *Cochrane Database Syst Rev*. 2013; 28: CD003878. <https://doi.org/10.1002/14651858.CD003878.pub5>

24. De Waal YCM, Vangsted T, Van Winkelhoff AJ. Systemic antibiotic therapy as an adjunct to non-surgical peri-implantitis treatment: A single-blind RCT. *J Clin Periodontol*. 2021 Jul;48(7):996-1006. <https://doi.org/10.1111/jcpe.13464>

25. Wimmer L, Petrakakis P, El-Mahdy K, Herrmann S, Nolte D. Implant-prosthetic rehabilitation of patients with severe horizontal bone deficit on mini-implants with two-piece design-retrospective analysis after a mean follow-up of 5 years. *Int J Implant Dent*. 2021 Jul 28;7(1):71. <https://doi.org/10.1186/s40729-021-00353-8>

26. Choudhary S, Verma N, Anand S, Sinha A, Shankar D. Comparative Evaluation of Changes in Microflora in Delayed and Immediate Implant Placement: An In vivo Study. *J Pharm Bioallied Sci*. 2021 Jun;13(Suppl 1):S105-S108. https://doi.org/10.4103/jpbs.JPBS_572_20

27. Dev SV, Perti S, Sahoo KK, Mohanty A, Pati SK, Sri AN. A Comprehensive Assessment of Bone Losses in the Postoperative Phase of Single Implant Placed in Mandibular First Molar Regions: A Cone-Beam Computed Tomography-Based Clinical Study. *J Pharm Bioallied Sci*. 2021 Nov;13(Suppl 2):S1530-S1534. https://doi.org/10.4103/jpbs.ipbs_273_21

28. Sullivan DO, Sennerby L, Meredith N. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. *Clin Implant Dent Relat Res*. 2000; 2: 85- 92. <https://doi.org/10.1111/j.1708-8208.2000.tb00110.x>

29. Ceruso FM, Ieria I, Tallarico M, Meloni SM, Lumbau AI, Mastroianni A, Zotti A, Gargari M. Comparison between Early Loaded Single Implants with Internal Conical Connection or Implants with Transmucosal Neck Design: A Non-Randomized Controlled Trial with 1-Year Clinical, Aesthetics, and Radiographic Evaluation. *Materials (Basel)*. 2022 Jan 10;15(2):511. <https://doi.org/10.3390/ma15020511>

30. Dib-Zaitum I, Guadilla-González Y, Flores-Fraile J, Dib-Zakkour J, Benito-Garzón L, Montero J. Effect Morphology and Surface Treatment of the Abutments of Dental Implants on the Dimension and Health of Peri-Implant Biological Space. *Materials (Basel)*. 2022 Jun 22;15(13):4422. <https://doi.org/10.3390/ma15134422>

31. Velasco-Ortega E, Cracel-Lopes JL, Matos-Garrido N, Jiménez-Guerra A, Ortiz-García I, Moreno-Muñoz J, Núñez-Márquez E, Rondón-Romero JL, López-López J, Monsalve-Guil L. Immediate Functional Loading with Full-Arch Fixed Implant-Retained Rehabilitation in Periodontal Patients: Clinical Study. *Int J Environ Res Public Health*. 2022 Oct 13;19(20):13162. <https://doi.org/10.3390/ijerph192013162>

32. Ercal P, Taysi AE, Ayvalioglu DC, Eren MM, Sismanoglu S. Impact of peri-implant bone resorption, prosthetic materials, and crown to implant ratio on the stress distribution of short implants: a finite element analysis. *Med Biol Eng Comput*. 2021 Apr;59(4):813-824. <https://doi.org/10.1007/s11517-021-02342-w>

33. Guarnieri R, Savio L, Bermonds A, Testarelli L. Implants with a Laser-microgrooved Collar Placed in Grafted Posterior Maxillary Extraction Sockets and in Crestally Grafted Sinuses: a 5-Year Multicentre Retrospective Study. *J Oral Maxillofac Res*. 2020 Dec 31;11(4):e2. <https://doi.org/10.5037/jomr.2020.11402>

34. Lorusso F, Noumbissi S, Francesco I, Rapone B, Khater AGA, Scarano A. Scientific Trends in Clinical Research on Zirconia Dental Implants: A Bibliometric Review. *Materials (Basel)*. 2020 Dec 4;13(23):5534. doi: 10.3390/ma13235534. <https://doi.org/10.3390/ma13235534>

35. Wadhwa P, Kim SK, Kim HJ, Lim HK, Jia Q, Jiang HB, Lee ES. A Six-Year Prospective Comparative Study of Wide and Standard Diameter Implants in the Maxillary and Mandibular Posterior Area. *Medicina (Kaunas)*. 2021 Sep 25;57(10):1009. <https://doi.org/10.3390/medicina57101009>

36. Yemineni BC, Mahendra J, Nasina J, Mahendra L, Shivasubramanian L, Perika SB. Evaluation of Maximum Principal Stress, Von Mises Stress, and Deformation on Surrounding Mandibular Bone During Insertion of an Implant: A Three-Dimensional Finite Element Study. *Cureus*. 2020 Jul 27;12(7):e9430. <https://doi.org/10.7759/cureus.9430>

37. Pałka ŁR, Lazarov A. Immediately Loaded Bicortical Implants Inserted in Fresh Extraction and Healed Sites in Patients with and Without a History of Periodontal Disease. *Ann Maxillofac Surg*. 2019 Jul-Dec;9(2):371-378. https://doi.org/10.4103/ams.ams_147_19

38. Lazarov AB. The Impact of Diabetes, Smoking, and Periodontitis on Patients' Oral Health related Quality of Life after Treatment with Corticobasal Implants - An Evaluative Study. *Ann Maxillofac Surg*. 2021 Jul-Dec;11(2):253-260. https://doi.org/10.4103/ams.ams_191_21

39. Ihde SKA. The "Specialist Standard" has Changed in Oral Implantology. *Ann Maxillofac Surg*. 2021 Jul-Dec;11(2):215-216. https://doi.org/10.4103/ams.ams_262_21

40. Jani M, Gaur V, Doshi AG, Patel K, Pałka Ł. Clinically Based Classification and Positioning Indication for Single-Piece Compressive Implants Placement in Regard to Extraction Socket. *Healthcare (Basel)*. 2022 Mar 22;10(4):598. <https://doi.org/10.3390/healthcare10040598>

41. Wang J, Zhang Z, Deng F. Marginal bone level change during sequential loading periods of partial edentulous rehabilitation using immediately loaded self-tapping implants: a 6.5-year retrospective study. *J Adv Prosthodont*. 2022 Jun;14(3):133-142. <https://doi.org/10.4047/jap.2022.14.3.133>

42. Marconcini S, Giammarinaro E, Covani U, Mijiritsky E, Vela X, Rodriguez X. The Effect of Tapered Abutments on Marginal Bone Level: A Retrospective Cohort Study. *J Clin Med*. 2019 Aug 24;8(9):1305. <https://doi.org/10.3390/jcm8091305>

43. Lombardi T, Berton F, Salgarello S, Barbalonga E, Rapani A, Piovesana F, Gregorio C, Barbat G, Di Lenarda R, Stacchi C. Factors Influencing Early Marginal Bone Loss around Dental

Implants Positioned Subcrestally: A Multicenter Prospective Clinical Study. *J Clin Med.* 2019 Aug 4;8(8):1168.
<https://doi.org/10.3390/jcm8081168>

44. Torrejon-Moya A, Izquierdo-Gómez K, Pérez-Sayáns M, Jané-Salas E, Marí Roig A, López-López J. Patients with Thyroid Disorder, a Contraindication for Dental Implants? A Systematic Review. *J Clin Med.* 2022 Apr 25;11(9):2399
<https://doi.org/10.3390/jcm11092399>

45. Dorj O, Lin CK, Salamanca E, Pan YH, Wu YF, Hsu YS, Lin JC, Lin HK, Chang WJ. Marginal Bone Loss around Implant-Retaining Overdentures versus Implant-Supported Fixed Prostheses 12-Month Follow-Up: A Retrospective Study. *Int J Environ Res Public Health.* 2022 Feb 3;19(3):1750
<https://doi.org/10.3390/ijerph19031750>

46. Saravi B, Vollmer A, Hartmann M, Lang G, Kohal RJ, Boeker M, Patzelt SBM. Clinical Performance of CAD/CAM All-Ceramic Tooth-Supported Fixed Dental Prostheses: A Systematic Review and Meta-Analysis. *Materials (Basel).* 2021 May 20;14(10):2672.
<https://doi.org/10.3390/ma14102672>

47. Guo Y, Kono K, Suzuki Y, Ohkubo C, Zeng JY, Zhang J. Influence of marginal bone resorption on two mini implant-retained mandibular overdenture: An in vitro study. *J Adv Prosthodont.* 2021 Feb;13(1):55-64
<https://doi.org/10.4047/jap.2021.13.1.55>

48. French D, Ofec R, Levin L. Long term clinical performance of 10 871 dental implants with up to 22 years of follow-up: A cohort study in 4247 patients. *Clin Implant Dent Relat Res.* 2021 Jun;23(3):289-297.
<https://doi.org/10.1111/cid.12994>

49. Yoo SY, Kim SK, Heo SJ, Koak JY, Jeon HR. Clinical Performance of Implant Crown Retained Removable Partial Dentures for Mandibular Edentulism-A Retrospective Study. *J Clin Med.* 2021 May 18;10(10):2170.
<https://doi.org/10.3390/jcm10102170>

50. Sodnom-Ish B, Eo MY, Nguyen TTH, Kim MJ, Kim SM. Clinical feasibility and benefits of a tapered, sand-blasted, and acid-etched surfaced tissue-level dental implant. *Int J Implant Dent.* 2020 Oct 6;6(1):39
<https://doi.org/10.1186/s40729-020-00234-6>