

Original Article

Factors Leading to Delay in Diagnosis of Childhood Cancer in Pakistan

Sarah Bano¹, Muhammad Rafie Raza², Namrita Rai³, Muhammad Shamvil Ashraf⁴, Meher Afroze⁵

^{1,5}Fellow Pediatric Hematology Oncology, ²Head of department Pediatric Hematology Oncology

³Program Coordinator, Department of pediatric Haematology oncology

⁴Pediatric Haematologist oncologist, Executive Director Medical Services
(Indus Hospital and Health Network Karachi)

Authors Contribution
^{1,3} Substantial contributions to the conception or design of the work; or the acquisition, ^{2,5} Drafting the work or revising it critically for important intellectual content, ⁴ Final article to be published
Funding Source: None
Conflict of Interest: None
Received: Sept 12, 2023
Accepted: Dec 25, 2023

Address of Correspondent

Dr. Sarah Bano
Fellow Pediatric Hematology
Oncology, 2Head
Indus Hospital and Health
Network Karachi
sarahnazir2000@yahoo.com

ABSTRACT

Objective: To evaluate the factors leading to the delay in diagnosis of childhood cancers.

Methodology: This prospective cross-sectional study was conducted at the pediatric Hematology/Oncology Department of Indus Hospital & Health Network (IHHN) Karachi Pakistan. All children aged 4 months to 14 years diagnosed with malignancy were included. Parents were interviewed for reasons of delay in the diagnosis of their children. Delay in the diagnosis was defined as the patient not diagnosed on the primary health facilities, delaying diagnostic history will be considered as responsible factor. For hematological malignancy 4 weeks is considered as delay and in solid tumors 6 weeks is considered as delay. Data was entered and analyzed using SPSS version 26.0.

Results: The average age of the participants was approximately 7.45+4.10 years. 67.5% children were male, 70.2% children had an intermediate nutritional status and 4.3% had poor nutritional status. The most common malignant diagnoses among the children were leukemia, accounting for 45.5% of cases, followed by lymphoma at 17.6%, and bone tumors at 7.5%. Regarding the reasons behind the delay in diagnosis, 22.4% of cases were postponed due to living away from healthcare facilities, 28.6% of cases were held up due to poor socioeconomic status. Moreover, 33.3% of cases faced delays resulting from misdiagnosis, 13.3% were impeded by transportation issues, and 19.6% encountered delays due to ignorance.

Conclusion: Delay in childhood cancer diagnosis is a multifaceted problem involving various interconnected factors, like limited access to healthcare facilities, socioeconomic disadvantages, misdiagnosis, and transportation barriers. Cultural beliefs and preference for alternative treatments can further delay early interventions.

Key words: Malignancies, delay in diagnosis, factors.

*Cite this article as:*Bano S, Raza MR, Rai N, Ashraf MS, Afroze M. Factors Leading to Delay in Diagnosis of Childhood Cancer in Pakistan. Ann Pak Inst Med Sci. 2023; 19(4):467-471. 10.48036/apims.v19i4.889.

Introduction

Childhood cancer is largely curable, with a survival rate of over 80% in high-income countries (HICs).^{1,2} However, survival in low- and middle-income countries (LMICs) lags behind, with survival rates in some settings as low as under 10%.^{3,4} More than 80% of children who die from cancer worldwide do so in LMICs.⁴ Emerging evidence suggests that this survival gap can be diminished through both targeted childhood cancer program development and broader health system strengthening.^{5,6} Moreover, current

evidence indicates that childhood cancer treatment in LMIC settings is cost-effective.^{7,8} Improved childhood cancer outcomes in LMICs will require overcoming multiple barriers that presently compromise care delivery and impact survival.^{5,6,9} As modifiable risk factors for childhood cancer are unknown, efforts to increase timely diagnosis and access to effective treatment are crucial. A lack of both professional and public awareness of the early warning signs and symptoms (EWSS) of childhood cancer is a fundamental barrier in many LMICs.^{3,10-12} An increased awareness of EWSS would contribute to more

timely recognition of childhood cancers, referral for specialized care, diagnosis, and treatment initiation. This in turn holds the possibility of less advanced stage disease and lower disease- and treatment-related mortality.^{3,6,10-12}

Malignancies in pediatric populations differ from those common in adults in whom the influence of modifiable risk factors such as tobacco smoking, alcohol, obesity and certain infections dominates. Such factors are poorly defined and understood in the context of childhood cancers.⁹ Therefore, primary cancer prevention initiatives have had little impact at reducing childhood cancer incidence. Instead, interventions aimed at addressing the timelines of diagnosis and treatment, i.e., secondary prevention, are likely to provide opportunities for substantial improvement. It is well established that timing of cancer diagnosis can be an indicator of cancer outcome, with evidence of this relationship seen in some malignancies common to children and adolescents.^{13,14}

Few international studies showed different factors like one study performed in Nigeria Department of Pediatrics of the University College Hospital, Ibadan, Nigeria. Showed factors contributing to delayed diagnosis included delayed referral by doctors, seeking health care from alternate sources and financial constraints.¹⁵ The delay in diagnosing childhood cancer can be attributed to a complex interplay of various factors. Although no such studies have been found at a local level. This study has been conducted to evaluate the factors leading to the delay in diagnosis of childhood cancers, to explore recent knowledge regarding factors responsible for the delay to develop the management strategies to provide early access for arrival, diagnosis and treatment.

Methodology

This is a prospective cross-sectional study conducted at the Pediatric Hematology/Oncology Department of Indus Hospital & Health network (IHHN), Karachi Pakistan. Sample was selected through non-probability consecutive sampling technique. Data was collected following approval from the Institutional Review Board (IRB) of IHHN.

Pediatric oncology patients aged between 4 months and 14 years with a new diagnosis of malignancy were included in the study, while patients not diagnosed with malignancy during the workup, parents who did not consent to participate, and patients returning after a long gap with new registration of a previously diagnosed illness were excluded from the study. Interval of time measured in days that elapsed between the onset of cancer-related symptoms

and the patient's first visit to a physician. Time of referral defined as the time it took to complete the administrative paperwork for a patient's transfer from a primary or secondary care center to this health facility. After taking informed consent all the parents or caregivers were interviewed. Regarding their socioeconomic status, residential status, parental educational status. Parents or caregivers were also interviewed leading reasons of delaying in the diagnosis their children. The term patient interval referred to the interval of time measured in days that elapsed between the onset of cancer-related symptoms and the patient's first visit to a physician. The term diagnostic interval was defined as the interval of time that elapsed between the patient's first contact with a physician and the cancer diagnosis. Latency to diagnosis is the sum of the patient interval and the diagnostic interval. The term time of referral was defined as the time it took to complete the administrative paperwork for a patient's transfer from a primary or secondary care center to this health facility. Delay in the diagnosis was defined as the patient was not diagnosed on the primary health facilities, delaying diagnostic history was considered as responsible factor. For haematological malignancy 4 weeks is considered as delay and in solid tumors 6 weeks is considered as delay. All the data was record via study Performa. Data was entered and analyzed using SPSS version 26.0.

Results

A study was conducted on 255 children with malignancies to investigate the factors contributing to delayed diagnosis. The average age of the participants was approximately 7.45 years with a standard deviation of 4.10 years. Among the participants, 67.5% were male, 64.7%, were uneducated, whereas the remaining had received some level of formal education. Approximately, 70.2% of children had an intermediate nutritional status and 4.3% had poor nutritional status with 60.4% of them residing more than 100 kilometers away from the medical facility. The most common malignant diagnoses among the children were leukemia, accounting for 45.5% of cases, followed by lymphoma at 17.6%, and bone tumors at 7.5%, as detailed in Table I.

Regarding the reasons behind the delay in diagnosis, the most common causative factor selected by 33.3% of cases was misdiagnosis, followed by poor SES (28.6%) and distance (22.4%).

Delay in diagnosis was experienced by a total of 171(67.1%) of the families who were included in the study. As seen in Table II, significant associations were

found with income group and causative factors including missed diagnosis ($p<0.001$), lack of awareness ($p<0.005$) and financial difficulty ($p<0.03$). Table III describes associations of education level of the caregiver with causative factors showing significant values in stigma ($p<0.0001$), no effect of treatment ($p<0.03$) and having other children at home to take care of ($p<0.01$). When analyzed according to distance of the caregiver and patient's residence from the center, positive association was seen with missed diagnosis ($p<0.005$), lack of public transport availability ($p<0.0003$), stigma of disease ($p<0.0002$) and other children to take care of ($p<0.0003$).

Table I: Descriptive statistics of demographic and clinical characteristics (n=255)

Variables	Statistics	
Age	(Mean+SD)	7.45+4.10 years
Gender		N(%)
	Male	172 67.5%
Educational level	Female	83 32.5%
Nutritional status of children	Graduate Degree	05 2.0%
	Undergraduate Degree	29 11.3%
	High School	55 21.5%
	Primary School	01 0.4%
	Uneducated	166 64.8%
	Poor	11 4.3%
Distance	Good	65 25.5%
	Intermediate	179 70.2%
	<50KM	93 36.5%
Alternative treatment given	50-100KM	08 03.1%
	>100KM	154 60.4%
	No	185 72.5%
Diagnosis	Yes	13 05.1%
	No	06 02.4%
	Yes	51 20.0%
	Leukemia	114 44.5%
Causative Factors	Solid Tumor	47 18.4%
	Abdominal Tumor	28 11.0%
	Hodgkins Lymphoma	26 10.2%
	Non-Hodgkins Lymphoma	23 9.0%
	Brain Tumor	18 7.0%
	Distance	57 22.4%
	Poor SES	73 28.6%
	Missed Diagnosis	85 33.3%
	Transport	34 13.3%
	Ignorance	50 19.6%

Discussion

Childhood cancer is a devastating and potentially life-threatening disease that requires early detection for successful treatment. Regrettably, there are various factors

that can lead to delayed diagnosis in pediatric cancer cases. This study aims to explore the various elements and situations that contribute to the delay in diagnosing cancer in children. In this study participants had an average age of around 7.45 years, 67.5% were males, and 32.5% were females. Consistently Gardie Y et al¹⁶ reported that the approximately 65.5% individuals were males and reaming 35.5% were females, with median age of 7 years. On the other hand, Berhane A et al¹⁷ also demonstrated that the overall mean age of the study was 10 years and males were 68%. However, in certain studies or datasets, there may be a higher representation of males among childhood cancer cases, but this doesn't indicate dominance. Such variations can occur due to a range of factors, including genetic predisposition or differences in exposure to risk factors.

In this study the most common malignant diagnoses among the children were leukemia, accounting for 45.5% of cases, followed by lymphoma at 17.6%, and bone tumors at 7.5% and other represented in table above. These were supported by the Abdelkhalek ER et al¹⁸ and Koç BŞ et al¹⁹. In this study regarding the reasons behind the delay in diagnosis, 22.4% of cases were postponed because of their remote proximity to healthcare facilities, while 28.6% of cases were held up due to their disadvantaged socioeconomic status. Additionally, 33.3% of cases experienced delays because of misdiagnosis, 13.3% were hindered by transportation difficulties, and 19.6% faced delays due to the guardians' lack of awareness. In the comparison of this study Gardie Y et al¹⁶ reported that the living in rural areas, lacking health insurance coverage, having Hodgkin lymphoma or Retinoblastoma, not receiving referrals, and not having coexisting medical conditions were identified as significant factors linked to the delay in diagnosing childhood cancer.

In another study by Berhane A et al¹⁷ reported that the primary causes of delayed medical presentation included the utilization of alternative medicine in 47 cases (46.1%), constrained resources in 33 cases (32.3%), misconceptions about cancer in 32 cases (31.4%), and 11 cases (10.8%) involving painless lumps. Parents resorted to various forms of alternative treatments, such as holy water in 25 cases (24.5%), engaging in prayer ceremonies in 4 cases (3.9%), consulting herbalists in 12 cases (11.7%), using over-the-counter drugs in 3 cases (2.9%), and other methods.

In this study majority of the parents, 64.7% were uneducated, whereas the remaining had received some level of formal education, including a few who were graduates. Furthermore, most of the study subjects had

Table II: Cross-tabulation of income group with causative factors.

Causative factors		INCOME GROUP			P-Value
		Very Low Income	Low Income	Middle Income	
Missed Diagnosis	No	58	89	2	0.001138*
	Yes	21	41	9	
Public transport	no	64	116	10	0.220786
	yes	15	14	1	
Awareness	no	33	64	11	0.005529*
	yes	46	66	0	
Stigma	no	79	127	11	0.30384
	yes	0	3	0	
No Treatment Effects	no	75	123	9	0.207433
	yes	4	7	2	
Negative Treatment effects	no	61	100	9	0.933042
	yes	18	30	2	
Care of children	no	44	83	10	0.066177
	yes	35	47	1	
Delay in diagnosis	no	21	48	5	0.214551
	yes	58	82	6	

As a result, they may delay seeking medical attention for their children. Furthermore, in some cultures, there is a strong belief in traditional or alternative healing methods. Families may initially seek these treatments, assuming that they will address the child's symptoms. This can lead to delays in seeking medical attention from conventional healthcare providers. Due to several limitations, relatively small sample size, which can affect the generalizability of the findings and lack of a control group for comparison makes it challenging to assess the true impact of the identified factors. However further larger scale comprehensive case control studied would provide a more representative picture of the factors influencing diagnosis delays.

Conclusion

Delay in diagnosing childhood cancer is a complex

Table III: Cross tabulations of Education level with causative factors.

		Education Level					P-value
		Graduate	High School	Primary School	Undergraduat e	Uneducated	
Missed Diagnosis	No	1	36	0	16	117	0.092
	Yes	4	19	1	13	49	
Awareness	no	5	26	1	18	69	0.101
	yes	0	29	0	11	97	
Stigma	no	5	54	1	28	165	0.0001*
	yes	0	1	0	1	1	
No treatment effects	no	4	55	1	26	155	0.034*
	yes	1	1	1	3	11	
Negative treatment effect	no	4	41	1	21	132	0.740
	yes	1	14	0	8	34	
Care of children	no	5	41	1	23	90	0.011
	yes	0	14	0	6	76	
Delay in diagnosis	no	3	20	1	13	48	0.260
	yes	2	35	0	16	118	

poor socioeconomic status and formal nutrition level. These findings were almost similar Abdelkhaled ER et al¹⁹ as the parental education and socioeconomic status, which are closely intertwined, emerged as crucial factors in recognizing and interpreting the symptoms and signs of malignancies. Parental illiteracy and poor socioeconomic status can indeed be significant factors contributing to the delay in the diagnosis of childhood malignancies. Illiterate parents may have limited access to health information and resources, making them less aware of the early signs and symptoms of childhood malignancies. Families with low socioeconomic status often face financial barriers to accessing healthcare services. They may lack health insurance or the means to afford medical consultations, diagnostic tests, or transportation to healthcare facilities.

issue influenced by several interconnected factors. limitations in access to healthcare facilities, poor socioeconomic status, misdiagnosis, and transportation difficulties make it challenging for families to seek timely medical care for their children. Furthermore, alternative treatments, driven by cultural beliefs or mistrust in conventional medicine, can divert children away from essential early interventions. Addressing these multifaceted issues is paramount in the collective effort to improve the early detection of childhood cancer. Initiatives aimed at improving healthcare infrastructure and accessibility, especially in underserved areas, can help mitigate geographic barriers.

References

1. Ilison LF, Pogany L, Mery LS. Childhood and adolescent cancer survival: a period analysis of data from the Canadian Cancer Registry. *Eur J Cancer*. 2007;43(13):1967-75. <https://doi.org/10.1016/j.ejca.2007.05.014>
2. Pui C-H, Pei D, Pappo AS, Howard SC, Cheng C, Sandlund JT, et al. Treatment outcomes in black and white children with cancer: results from the SEER database and St Jude Children's Research Hospital, 1992 through 2007. *J Clin Oncol*. 2012;30(16):2005. <https://doi.org/10.1200/JCO.2011.40.8617>
3. Magrath I, Steliarova-Foucher E, Epelman S, Ribeiro RC, Harif M, Li C-K, et al. Paediatric cancer in low-income and middle-income countries. *The lancet oncology*. 2013;14(3):e104-e16. [https://doi.org/10.1016/S1470-2045\(13\)70008-1](https://doi.org/10.1016/S1470-2045(13)70008-1)
4. Rodriguez-Galindo C, Friedrich P, Alcasabas P, Antillon F, Banavali S, Castillo L, et al. Toward the cure of all children with cancer through collaborative efforts: pediatric oncology as a global challenge. *J Clin Oncol*. 2015;33(27):3065. <https://doi.org/10.1200/JCO.2014.60.6376>
5. Ward ZJ, Yeh JM, Bhakta N, Frazier AL, Girardi F. Global childhood cancer survival estimates and priority-setting: a simulation-based analysis. *The Lancet Oncology*. 2019;20(7):972-83. [https://doi.org/10.1016/S1470-2045\(19\)30273-6](https://doi.org/10.1016/S1470-2045(19)30273-6)
6. Ward ZJ, Yeh JM, Bhakta N, Frazier AL, Atun R. Estimating the total incidence of global childhood cancer: a simulation-based analysis. *The Lancet Oncology*. 2019;20(4):483-93. [https://doi.org/10.1016/S1470-2045\(18\)30909-4](https://doi.org/10.1016/S1470-2045(18)30909-4)
7. Renner L, Shah S, Bhakta N, Denburg A, Horton S, Gupta S. Evidence from Ghana indicates that childhood cancer treatment in sub-Saharan Africa is very cost effective: a report from the childhood cancer 2030 network. *J Glob Oncol*. 2018;4:1-9. <https://doi.org/10.1200/JGO.17.00243>
8. Denburg AE, Laher N, Mutyaba I, McGoldrick S, Kambugu J, Sessle E, et al. The cost effectiveness of treating Burkitt lymphoma in Uganda. *Cancer*. 2019;125(11):1918-28. <https://doi.org/10.1002/cncr.32006>
9. Gupta S, Hunger SP. Recent trends in the results of studies conducted by the Children's Oncology Group acute lymphoblastic leukemia committee and implications for emerging cooperative trial groups in low-and middle-income countries. *ediatr. Hematol. Oncol. J*. 2020;5(4):151-5. <https://doi.org/10.1016/j.phoj.2020.03.001>
10. Hill JA, Lee SY, Njambi L, Corson TW, Dimaras H. Cancer genetics education in a low-to middle-income country: evaluation of an interactive workshop for clinicians in Kenya. *PLoS One*. 2015;10(6):e0129852. <https://doi.org/10.1371/journal.pone.0129852>
11. Howard SC, Zaidi A, Cao X, Weil O, Bey P, Patte C, et al. The My Child Matters programme: effect of public-private partnerships on paediatric cancer care in low-income and middle-income countries. *The Lancet Oncology*. 2018;19(5):e252-e66. [https://doi.org/10.1016/S1470-2045\(18\)30123-2](https://doi.org/10.1016/S1470-2045(18)30123-2)
12. Leander C, Fu LC, Pena A, Howard SC, Rodriguez-Galindo C, Wilimas JA, et al. Impact of an education program on late diagnosis of retinoblastoma in Honduras. *Pediatric blood & cancer*. 2007;49(6):817-9. <https://doi.org/10.1002/pbc.21052>
13. Abramson DH, Beaverson K, Sangani P, Vora RA, Lee TC, Hochberg HM, et al. Screening for retinoblastoma: presenting signs as prognosticators of patient and ocular survival. *Pediatrics*. 2003;112(6):1248-55. <https://doi.org/10.1542/peds.112.6.1248>
14. Neal R, Tharmanathan P, France B, Din N, Cotton S, Fallon-Ferguson J, et al. Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review. *Br J.Cancer*. 2015;112(1):S92-S107. <https://doi.org/10.1038/bjc.2015.48>
15. Socioeconomicscale K, Varma A, Shaikh ZIJf, Medicine C. Modified Kuppuswamy socioeconomic scale updated for the. *Indian J Forensic Community Med*. 2020;7(1):1-3. <https://doi.org/10.18231/j.jifcm.2020.001>
16. Gardie Y, Wassie M, Wodajo S, Giza M, Ayalew M, Sewale Y, Feleke Z, et al. Delay in diagnosis and associated factors among children with cancer admitted at pediatric oncology ward, University of Gondar comprehensive specialized hospital, Ethiopia: a retrospective cross-sectional study. *BMC cancer*. 2023;23(1):469. <https://doi.org/10.1186/s12885-023-10873-8>
17. Berhane A, Hailu T, Mulugeta A. Determinants of delayed diagnosis among pediatric cancer patients from Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia. *BMC pediatrics*. 2019;19(1):1-8. <https://doi.org/10.1186/s12887-019-1848-1>
18. Abdelkhalek ER, Sherief LM, Kamal NM, Soliman RM. Factors associated with delayed cancer diagnosis in Egyptian children. *Clinical Medicine Insights: Pediatrics*. 2014;8:CMPed-S16413. <https://doi.org/10.4137/CMPed.S16413>
19. Koç BŞ, Tekkeşin F, Haccaloğlu EE, Beyter B, Aydoğdu S, Kılıç SÇ. Any Concern About Delays in the Diagnosis of Childhood Cancers During the COVID-19 Pandemic?. *Turkish Archives of Pediatrics*. 2023 ;58(1):75. <https://doi.org/10.5152/TurkArchPediatr.2022.22224>