

Determining the Rate of COVID-19 Infection in Post-Vaccinated Individuals and Its Severity

Azmat Ali¹, Abdur Rahman Butt²

¹Head of Department, ²Post-Graduate Trainee

Department of Medicine Department at KRL Hospital Islamabad

Author's Contribution
¹ Concept, Design, Analysis and interpretation of data
² Data Collection & Literature review
<i>Funding Source: None</i>
<i>Conflict of Interest: None</i>
<i>Received: July 15, 2022</i>
<i>Accepted: Dec 08, 2022</i>

Address of Correspondent

Dr Azmat Ali
Head of Department
Department of Medicine
Department at KRL Hospital
Islamabad
ali99azmat@gmail.com

ABSTRACT

Objective: To assess the incidence of Covid-19 infection in people who were vaccinated and to categorize disease severity.

Methodology: This cross sectional study was carried out at the Department of Medicine, KRL Hospital, Islamabad from September 2021 to February 2022. Individuals above 18 years of age, and fully vaccinated were included in the study. Using a pre-validated interview based close ended questionnaire data was collected, informed consent was obtained, and data was analyzed using SPSS Statistics 23. The severity of COVID-19 was determined by applying the WHO severity definitions.

Results: The study included 362 individuals. 55.00% were males and 45.00% were females. The minimum age was 20 years and maximum 76 years with a mean of 45.73 ± 14.919 . 27.1% of the participants had co morbidities, of which diabetes was the most frequent (59.18%). Majority (37.84%) individuals received Sinopharm vaccine. This was followed by Pfizer (24.58%) and Moderna (13.82%). 158 patients (43.65%) reported infection with covid-19. Out of 158, 41 (25.94%) had severe infection and 9 (5.70%) had critical infection on WHO criteria.

Conclusion: A substantial proportion of fully vaccinated individuals suffered from Covid-19 infection (43.64%). Pfizer was the most effective vaccine in preventing infection (79.77%). While Sinopharm was the least effective (41.60%). However, vaccination was effective in preventing severe and critical infection in a significant number of patients (86.18%).

Keywords: COVID-19; Pandemic; Vaccination; Immunity, Vaccine, Comorbid, Sinopharm, Moderna, Pfizer, Sinovac

Cite this article as: Ali A, Butt AR. Determining the Rate of COVID-19 Infection in Post-Vaccinated Individuals and Its Severity. Ann Pak Inst Med Sci. 2022; 18(4):286-289. doi. 10.48036/apims.v18i4.673

Introduction

The first case of coronavirus illness (COVID-19) was detected on December 31st, 2019 in Wuhan, China.¹ Public health systems around the globe had come to a standstill as a result of a global pandemic. The first country to detect a case of Covid-19 outside of China was Thailand.² Covid-19 was certain to become an area of research and study at some point because of the rapid spread of virus. It was officially declared as a pandemic on 11 March, 2020. Symptoms of the disease were more or less of common cold caused by influenza, however acute respiratory distress syndrome, respiratory failure, disseminated intravascular coagulopathy leading to multiple organ failure, cardiac arrhythmias and

superimposed secondary infections are some of the serious complications of Covid-19 that led to mortalities globally.³

Re-infection after an initial sickness is conceivable, however it is not known for how long an initial illness confers immunity to the virus.⁴ COVID-19 reinfection cases have been documented, and it's not clear if the virus causes immunity or not. While some reinfections are milder than the initial infection, some are more severe.⁵

Vaccination was seen as a vital tool to curb Covid-19 infection. Prodigious research efforts and universal coordination led to rapid development of vaccine candidates and initiation of clinical trials across the world. According to research, a greater awareness of the

risk posed by COVID-19 could increase vaccination readiness regardless of individual preferences.⁶

Two months after being treated for a PCR positive result, a cardiac surgeon in Pakistan experienced reinfection. After getting infected for the second time, the patient's Covid-19 PCR was also positive.⁷ Governments have incorporated vaccination for Covid-19 into their plans to fight the pandemic off. However, the role of vaccination in providing long term immunity seems controversial. Covid-19 vaccines on one hand protects against infection without causing any symptoms, on the other hand a majority of people report mild to moderate symptoms after receiving a vaccine.⁸ In some cases, even those fully vaccinated may still become infected.⁹ This led to hesitancy among general population about vaccination that could jeopardize global health and is a growing threat in fighting the pandemic.

Scientists are trying to achieve herd immunity in order to halt further spread of Covid 19 re-infections. Aiming to achieve herd immunity, 70–85% of the population must have been vaccinated against COVID-19. When it comes to COVID-19, people's opinions on the virus are constantly changing. Pfizer announced in November 2020 that the COVID-19 vaccine was 95% effective in preventing illness.¹⁰

The aim of this study was to assess the effectiveness of vaccines available to our population in preventing Covid-19 infection and its severity.

Methodology

This cross-sectional study was conducted in the department of medicine at KRL Hospital Islamabad, Pakistan, from September 2021 to February 2022. Non-probability convenience sampling technique was used. Data was collected after obtaining approval from the ethical committee of KRL hospital Islamabad. Informed consent of the individuals involved in the study was taken. The severity of COVID-19 was graded by applying the WHO severity definitions.¹¹

Patients were grouped into:

1. Non-Severe:
2. Severe
3. Critical.

Data was entered and analyzed using SPSS version 23. Descriptive statistics were taken and the results were interpreted in frequencies and percentages. Participants

included were 18 years of age and above. All were vaccinated. Individuals below 18 years of age and those who were unvaccinated were excluded from our study.

Results

A total of 362 patients were included in our study. Of which, 199 (55%) were males whereas 163 (45%) were females. Mean age was as 45.73 ± 14.919 , with a minimum age of 20 and maximum of 76 years. 98 patients (27.1%) had co morbidities. (Table I). Types of vaccines administered are shown in table II. Out of 362 vaccinated individuals, 158 (43.64%) got infected with Covid-19. Post vaccination infection rate in respect of different vaccine is shown in table II. Table III shows grades of severity of infection.

Table I: Comorbidities

Comorbidities	N	(%)
Diabetes	58	59.18
Hypertension	44	44.90
Asthma/COPD	16	16.33
IHD	8	08.16

Table II: Type of Vaccines/ Post vaccination infection rate

Vaccines	infection rate	
	N	(%)
Sinopharm	80	58.39
Pfizer	24	48.00
Moderna	20	50.00
Sino Vac	18	20.22
AstraZeneca	11	36.66
Can Sino	5	31.25

Table III: Severity of infections

Severity of infection	N	(%)
Non severe	108	68.35
Severe	41	25.94
Critical	9	5.70

Discussion

A global vaccination effort is the most effective way to prevent the further spread of the COVID-19 pandemic. Vaccine hesitancy has also become a serious issue in combating the pandemic, especially in Pakistan.¹² As per statistics, two out of five Pakistanis are hesitant to get the COVID-19 vaccine.¹³ This situation prevails despite the efficacy (and safety) of the vaccines themselves having been clearly demonstrated from the time of Phase 3 clinical trials.¹⁴ Concentrated efforts on the part of the vaccination teams and doctors to educate the population, persistence of myths and misinformation remains the major prevalent cause in prevention of an ideal vaccination effort and drive.¹⁵

Immunocompromised patients and health care personnel have always been prioritized in the COVID-19 immunization program, as were the elderly and those with pre-existing diseases.¹⁶ Our study shows that fully vaccinated individuals experienced a modest illness, thus preventing some of the most lingering health consequences such as severe or critical disease requiring intensive care hospitalization. Overall in our study 43.64 percent individuals acquired infection despite being fully vaccinated. Similar results were reported elsewhere.

Those who acquire COVID-19 despite immunization have lower virus load, shorter illness time, and milder symptoms than those who were unvaccinated.¹⁷ A weekly mortality and morbidity report revealed association between vaccination and Covid-19 infection. Unvaccinated individuals were 2.34 times more likely to have the infection as compared to fully vaccinated individuals.¹⁸ A prospective cohort study reported that administering a booster vaccination a few months after a positive COVID infection resulted in a significant rise in COVID-19-directed IgG and IgA antibody levels.¹⁹ In contrast to this natural immunity provides IgG antibodies only.²⁰⁻²¹

Amongst the reported comorbidities, diabetes was the most frequent. In our study, 16% of all participants were diabetic. A meta-analysis published in 2020 showed that patients who had pre-existing diabetes have a 2.3-fold increased risk of COVID-19 severity and a 2.5-fold increased risk of mortality.²² Another study observed similar results, with severity of Covid-19 risk of 2.75 times in patients with diabetes and 1.90 times risk for death.²³

A prospective cohort study reports that COVID-19-vaccinated HCWs showed 100% recovery with no mortality, and only 5.6% of the individuals reported moderate disease vs 94.4% who remained asymptomatic or had mild symptoms.²⁴

A case-control study across 21 hospitals in the United States reports that COVID-19-vaccinated patients showed considerably lower illness severity of the virus, including omicron and delta variants.²⁵

The Centers for Disease Control and Prevention report that as long as SARS-CoV-2 continues to be transmitted in the community, the danger of infection in fully vaccinated people cannot be eradicated completely.²⁶

Conclusion

A substantial proportion of fully vaccinated individuals suffered from Covid-19 infection (43.64%). Pfizer was the most effective vaccine in preventing infection (79.77%). While Sinopharm was the least effective (41.60%). However, vaccination was effective in preventing severe and critical infection in a significant number of patients (86.18%).

References

1. Cheng SC, Chang YC, Chiang YL, Chien YC, Cheng M, Yang CH, Huang CH, et al. First case of Coronavirus Disease 2019 (COVID-19) pneumonia in Taiwan. *J Formos Med Assoc.* 2020;119(3):747-51. <https://doi.org/10.1016/j.jfma.2020.02.007>
2. Durkee A. Thailand Sees First Local Coronavirus Case In 100 Days [Internet]. Forbes. 2022 [cited 15 June 2022]. Available from: <https://www.forbes.com/sites/alisondurkee/2020/09/03/thailand-first-local-coronavirus-case-in-100-days/?sh=35398ed959a4>
3. Archived: WHO Timeline - COVID-19 [Internet]. Who.int. 2022 [cited 16 June 2022]. Available from: <https://www.who.int/news/item/27-04-2020-who-timeline-covid-19>
4. Qureshi AI, Baskett WI, Huang W, Lobanova I, Hasan Naqvi S, Shyu CR. Reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients undergoing serial laboratory testing. *Clin. Infect. Dis.* 2022;74(2):294-300. <https://doi.org/10.1093/cid/ciab345>
5. Stokel-Walker C. What we know about covid-19 reinfection so far. *BMJ.* 2021; 19;372. <https://doi.org/10.1136/bmj.n99>
6. Selvaraj P, Muthu S, Jeyaraman N, Prajwal GS, Jeyaraman M. Incidence and severity of SARS-CoV-2 virus post COVID-19 vaccination: A cross-sectional study in India. *Clin Epidemiol Glob Health.* 2022;14:100983. <https://doi.org/10.1016/j.cegh.2022.100983>
7. Hanif M, Haider MA, Ali MJ, Naz S, Sundas FN. Reinfection of COVID-19 in Pakistan: a first case report. *Cureus.* 2020;12(10). <https://doi.org/10.7759/cureus.11176>
8. CDC. Understanding how COVID-19 vaccines work [Internet]. Cdc.gov. 2021 [cited 2021 Aug 29]. Available from: <https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/how-they-work.html>

9. CDC. The possibility of COVID-19 after vaccination: Breakthrough infections [Internet]. Cdc.gov. 2021 [cited 2021 Aug 29]. Available from: <https://www.cdc.gov/coronavirus/2019-ncov/vaccines/effectiveness/why-measure-effectiveness/breakthrough-cases.html>
10. Alfatease A, Alqahtani AM, Orayj K, Alshahrani SM. The impact of social media on the acceptance of the COVID-19 vaccine: A cross-sectional study from Saudi Arabia. *Patient Prefer Adherence*. 2021;15:2673. <https://doi.org/10.2147/PPA.S342535>
11. Living guidance for clinical management of COVID-19 WHO [cited 2022 Jun 21]. Available from: <https://apps.who.int/iris/bitstream/handle/10665/349321/WHO-2019-nCoV-clinical-2021.2-eng.pdf>
12. Khalid S, Usmani BA, Siddiqi S. COVID-19 vaccine hesitancy in Pakistan: a mini review of the published discourse. *Frontiers in public health*. 2022;10:841842. <https://doi.org/10.3389/fpubh.2022.841842>
13. Mehmood Q, Ullah I, Hasan MM, Kazmi SK, Ahmadi A, Lucero-Prisno DE. COVID-19 vaccine hesitancy: Pakistan struggles to vaccinate its way out of the pandemic. *Ther Adv Vaccines Immunother*. 2022 Jan;10:2515135522107766. <https://doi.org/10.1177/25151355221077658>
14. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. *N Engl J Med*. 2021; 384: 403-416. <https://doi.org/10.1056/NEJMoa2035389>
15. Zakar R, Momina A ul, Shahzad S, Hayee M, Shahzad R, Zakar MZ. COVID-19 Vaccination Hesitancy or Acceptance and Its Associated Factors: Findings from Post-Vaccination Cross-Sectional Survey from Punjab Pakistan. *International Journal of Environmental Research and Public Health* 2022;19:1305. <https://doi.org/10.3390/ijerph19031305>
16. Ali H, Ahmad B, Al-Shammari AA, Alterki A, Hammad M, Cherian P, et al. Previous COVID-19 Infection and Antibody Levels After Vaccination. *Front Public Health*. 2021;9:778243. <https://doi.org/10.3389/fpubh.2021.778243>
17. COVID-19 Vaccine Reduces Severity, Length, Viral Load for Those Who Still Get Infected [Internet]. UArizona Health Sciences. 2022 [cited 23 April 2022]. Available from: <https://healthsciences.arizona.edu/newsroom/news-releases/2021/covid-19-vaccine-reduces-severity-length-viral-load-those-who-still-get>
18. Cavanaugh AM, Spicer KB, Thoroughman D, Glick C, Winter K. Reduced risk of reinfection with SARS-CoV-2 after COVID-19 vaccination-Kentucky, May-June 2021. *Morbidity and Mortality Weekly Report*. 2021;70(32):1081. <https://doi.org/10.15585/mmwr.mm7032e1>
19. Glück V, Grobecker S, Köstler J, Tydykov L, Bertok M, Weidlich T, Gottwald C, et al. Immunity after COVID-19 and vaccination: follow-up study over 1 year among medical personnel. *Infection*. 2022;50(2):439-46. <https://doi.org/10.1007/s15010-021-01703-9>
20. Lumley SF, Wei J, O'Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, et al. The duration, dynamics and determinants of SARS-CoV-2 antibody responses in individual healthcare workers. *MedRxiv*. 2020. <https://doi.org/10.1101/2020.11.02.20224824>
21. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A, Nakao C. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. *Science*. 2021;371(6529):eabf4063. <https://doi.org/10.1126/science.abf4063>
22. de Almeida-Pititto B, Dualib PM, Zajdenverg L, Dantas JR, De Souza FD, Rodacki M, Bertoluci MC. Severity and mortality of COVID-19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. *Diabetology & metabolic syndrome*. 2020;12(1):1-2. <https://doi.org/10.1186/s13098-020-00586-4>
23. Kumar A, Arora A, Sharma P, Anikhindi SA, Bansal N, Singla V, Khare S, Srivastava A. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews*. 2020;14(4):535-45. <https://doi.org/10.1016/j.dsx.2020.04.044>
24. Maroof S, Bakht N, Saleem S, Nisar S, Rashid Z, Mansoor E, Iftikhar A. COVID-19 vaccine breakthrough infections among health care workers in military institutes of pakistan-till 30th June 2021. *Pakistan Armed Forces Medical Journal*. 2021;71(4):1471-75.
25. Lechmere T, Snell LB, Graham C, Seow J, Shalim ZA, Charalampous T, Alcolea-Medina A, et al. Broad Neutralization of SARS-CoV-2 Variants, Including Omicron, following Breakthrough Infection with Delta in COVID-19-Vaccinated Individuals. *Mbio*. 2022;13(2):e03798-21. <https://doi.org/10.1128/mbio.03798-21>
26. Centers for Disease Control and Prevention. SARS-CoV-2 Variant Classifications and Definitions [Available from: <https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html>