

The Physiological Association Between Mean Platelet Volume and Diabetes Mellitus Type 2; Correlation Between HbA1c Score and MPV Index

**Syed Farhan Uddin¹, Shabnam Rani², Nudrat Zeba³, Gordhan⁴, Nadeem Memon⁵,
Mohammad Khalid Nizaman⁶**

¹Associate Professor, Department of Physiology, Muhammad Medical College MirpurKhas

²Assistant Professor, Department of Medicine, Muhammad Medical & Dental College, Mirpur Khas

³Associate Professor Community Medicine, Bilawal Medical College,

⁴Associate Professor, Medicine department, Muhammad medical college MirpurKhas

⁵Associate Professor, Department of Medicine, Muhammad Medical & Dental College MirpurKhas.

⁶Senior Registrar Internal medicine Indus medical college Tando Muhammad khan

Author's Contribution	ABSTRACT
^{1,2} <i>Substantial contributions to the conception or design of the work or the acquisition, methodology, analysis, ³Final approval of the version to be published. ^{4,5}Active Participation in active, ⁶Drafting the work or revising it critically for important intellectual content</i>	Objective: To evaluate difference in mean platelet volume between non-diabetics and diabetics individual and to find the relationship between Hba1c level and MPV among type 2 diabetic individuals.
Funding Source: None	Methodology: This was a retrospective study conducted from December 2022 to November 2023 in Muhammad Medical College and Hospital with prior approval from ethical committee via letter No: Physiol dated 10-03-20. By random sampling 370 participants were selected in which 214 were diabetics and 156 were non-diabetics. Their blood pressure, BMI, Hba1c level, fasting and post prandial glucose level was measured. For evaluation of complete blood picture and MPV an automatic (Beckman coulter) machine was used. Statistical analysis was done by Graph Pad Prism 9.
Conflict of Interest: None	Results: it was noted that both male and female show significant association between raised MPV and increased serum glycemic level (P value less than 0.05). In male MPV increased in 21.89% patients ($x^2 = 33.96$, df=3 and P value= 0.0001). In female MPV increased in 17.29% patients (Odd ratio 3.07 and P value= 0.0006).
Received: Feb 17, 2024 Accepted: May 12, 2024	Conclusion: Mean platelet volume in diabetics was found to be higher as compared to non-diabetic subjects. In diabetic patients with Hba1c less than 6.5% had less raised MPV as compare to diabetics with Hba1c level greater than 6.5%.
Address of Correspondent Dr. Syed Farhan Uddin Associate Professor, Department of Physiology, Muhammad Medical College MirpurKhas syedf4252@gmail.com	Key words: MPV, DM type 2, HbA1c score, MPV index, correlation

Cite this article as: Uddin SF, Rani S, Zeba N, Gordhan, Memon N, Nizaman MK. The Physiological Association Between Mean Platelet Volume and Diabetes Mellitus Type 2; Correlation Between HbA1c Score and MPV Index Ann Pak Inst Med Sci. SUPPL-1 (2024): 459-463. doi. 10.48036/apims.v20ISUPPL-1.1109

Introduction

Diabetes mellitus (DM) is a widely prevailing endocrine disorder, which slowly and gradually affects multiple organs in the human body. The characteristic sign of DM is an increased serum glucose level and decrease intracellular glycemic level.¹ World Health Organization describes Diabetes mellitus as a metabolic disorder which is caused by defect in insulin release or production, or mechanism of action. Globally 171 million people get affected by this disease and according to an estimate by the

end of 2030; 366 million people will suffer from DM type 2.²

Diabetes mellitus affects different systems of body leading to cerebrovascular accidents, altered kidney functions and neuropathies. Most of these disorders are produced by the thrombotic and embolic complications of diabetes mellitus. Platelets activation in diabetes is the mechanism behind these thrombo embolic complications. Mean platelet volume is the indicator which measures the level of platelet activation.³ Because of increased platelet

activation diabetic patients are on increased risk of atherosclerosis and cardiovascular complications.⁴

Persistent hyperglycemia for prolong period of time stimulate neutrophils in liver to release thrombopoietin, which increases the production of platelets in bone marrow causing release of immature platelets with raised mean platelet volume in blood.⁵ Uncontrolled hyperglycemia promotes glycation of platelets surface proteins which not only make them more reactive but also reduce the fluid content of its plasma membrane. Therefore type 2 diabetic patients have increase expression of glycoprotein Ib and IIb/IIIa at cell surface. All these changes make platelets stickier and more prone to stimulate coagulation and thrombus formation.⁶

Platelets with increased volume have concentrated granules in the cytoplasm which releases excessive thromboxane A2 making platelets more sensitive and susceptible to aggregate together on exposure to collagen and Adenosine di phosphate (ADP).⁷

Insulin controls the action of platelets by some regulatory mechanisms. It inhibits excessive activation and aggregation of platelets following an injury or inflammation. It stimulate release of nitrous oxide synthetase which increases the production of Nitrous oxide in blood leading to vasodilation and lastly it increases intracellular concentration of a second messenger called cAMP (cyclic adenosine monophosphate) which signals to reduce the activation and clamping of platelets together. Thereby inhibits abnormal clotting in blood vessels.⁸ Worldwide these three tests are preferred for diagnosis of Diabetes mellitus type 2. Measurement of fasting blood glucose, 2 hours post glucose ingestion results of oral glucose tolerance test and value of Hemoglobin A1c.⁹

The Normal Glycemic index in a healthy individual is about 72 to 108 mg/dL. In pre diabetics, the plasma fasting glucose is about 100 to 125 mg/dL and value for oral glucose tolerance is about 140 to 199 mg/dL. Whereas in diabetics the random blood sugar is more than 200mg/dl, fasting blood sugar is more than 126mg/dl and oral glucose tolerance test is more than 200mg/dl.¹⁰ In Diabetics individuals the recommended maintenance range of HbA1c score from 6.5 to 7% is considered to safer in long run as the risk for development of diabetes related complications get reduce.¹¹ A Diabetic Association of America (ADA) in 2013 gives criteria for controlled diabetes vs uncontrolled diabetes. It says diabetics with HbA1c lesser then 7% have a controlled glycemic level, whereas HbA1c greater than 7% have an uncontrolled

glycemic level. Which 50 times increases the risk for micro and macro vascular complications.¹²

Mean platelet volume (MPV) is a routinely done test as it is an inflammatory marker of different pathologies. Increase MPV indicates larger platelets with more aggressive and reactive behavior. Many researches globally found an increase in MPV in DM type 2.¹³ The reference range for MPV is 7.5 to 12 fl. MPV have an inverse relationship with platelet count i.e., volume of platelets get decreased as the production rate of platelets increases. Platelets of more than 15fl are considered to be young and more energetic as compared to platelets with standard MPV.¹⁴ MPV are a low cost, easily available and feasible to interpret test which worldwide attracts the attention of many researchers and medical practitioners globally.¹⁵ The aims and objective of the study was to evaluate the relationship between serum glycemic level and mean platelet volume (MPV)

Methodology

This was a cross sectional study conducted from December 2022 to November 2023. The setting of the study was Mohammad Medical College/Hospital of Mirpurkhas. Total 370 patients were recruited for this study. The inclusion criteria included age range between 30 to 50 years, suffering from type 2 diabetes mellitus. All those patients suffering from hypertension, anemia, chronic kidney disease, chronic obstructive pulmonary disease, alcohol and drug use were excluded from the study. A prior permission was taken from the Ethical committee of Mohammad medical College Mirpurkhas by ethical latter No: Physiol dated 10-03-20. The study was carried out according to rules of Helsinki's declaration. The total data (n=370) was divided in two groups. 214 patients were in the study group who were diagnosed with diabetes mellitus type 2 and 156 were in control group (with HbA1c level less than 6.5%) who were non-diabetics healthy individuals. In study group (n=214), 128 were males and 86 were females. Whereas in control group n=156 (with HbA1c level less than 6.5%), 74 were males and 82 were females. All subjects were provided with both verbal explanation about the procedure of the study and a written consent form. A detailed history and clinical evaluation was conducted on all the patients to find out any possible pathology or complication of Diabetes. Blood pressure and BMI were measured of all subjects. For the evaluation of complete blood picture and mean platelet volume, the blood sample was taken from anterior cubital vein to a test tube containing anticoagulant EDTA at room temperature

then send to an automated blood analyzer machine (BECKMEN COULTER ACT 5diff) in laboratory. For the evaluation of plasma glucose level, blood sample was collected in a sodium fluoride containing test tube and was placed in (Johnson vitors 250) auto analyzer, which work on the principle of glucose oxidation method whereas for HbA1c level an EDTA containing test tube is used which was subjected to a high performance liquid chromatography (HPLC).

The Graph Pad Prism 9 was used as a tool to statistically evaluate the results of the study. The column option was operated to evaluate the mean, median, mode and error of mean. Chi square and Fischer's exact test was applied to determine the P value which was considered significant at > 0.05 .

Results

The total data (n=370) was divided in two groups. 214 patients were in the study group (128=male and 86=female). Whereas in control group (n=156), 74 were males and 82 were females.

Table I Describes the demographic and basic clinical evaluation data of the participants. The mean values of male and female participants are shown separately. The mean age of females was 38.59 ± 7.3 and 39.68 ± 6.1 of males. The systolic BP in males was 123.4 ± 8.7 and diastolic was 79.23 ± 5.6 while in female systolic was 113.4 ± 13.4 and diastolic was 77.4 ± 6.5 . HbA1c level in males was 7.03 ± 0.6 and in female 7.08 ± 0.6 .

Table 1: examines the basic clinical parameters of participants.

Variables	Mean \pm SD	Min	Max	STD	Error of Mean
Age (Females)	38.59 ± 7.3	24.0	50.0	0.56	
Age (Males)	39.68 ± 6.1	30.0	50.0	0.42	
BMI (Males)	20.3 ± 2.4	17.14	25.8	0.17	
BMI (Females)	19.9 ± 2.8	17.5	27.4	0.21	
Systolic (males)	123.4 ± 8.7	100	140	0.61	
Systolic (females)	113.4 ± 13.4	90	139	1.03	
Diastolic (males)	79.23 ± 5.6	70.0	89.0	0.39	
Diastolic (Females)	77.4 ± 6.5	67.0	89.0	0.50	
Fasting blood sugar (Non-Diabetic Males)	85.8 ± 9.0	70.0	100.0	1.05	
Fasting blood sugar (Diabetic Males)	115.5 ± 16.0	70.0	135.0	1.41	
Fasting blood sugar (Non-Diabetic Females)	83.16 ± 9.0	70.0	100.0	0.9	

Fasting blood sugar (Diabetic Females)	111.6 ± 17.0	70.0	132.0	1.8
HbA1c (Non-Diabetic Males)	4.95 ± 0.5	4.1	6.0	0.06
HbA1c (Diabetic Males)	7.03 ± 0.6	6.1	8.3	0.05
HbA1c (Non-Diabetic Females)	4.99 ± 0.59	4.1	6.0	0.06
HbA1c (Diabetic Females)	7.08 ± 0.6	6.1	8.1	0.06

Table II discusses that female showed significant association between raised MPV and increased serum glycemic level. 64(17.29%) females expressed increased MPV (Odd ratio 3.07 and P value= 0.0006)

Table II: association of MPV in females of control and test groups

HbA1c % (Females)	MPV (7-12fl).	MPV more than 12fl	Odd ratio	P value
HbA1c less than 6.5%	51(13.78%)	31(8.37%)	3.07	0.0006
HbA1c more than 6.5%	22(5.94%)	64(17.29%)		

Table III discusses that Male showed significant association between raised MPV and increased serum glycemic level. 81(21.89%) males expressed increased MPV ($\chi^2/df=33.95/3$ and P value=0.0001

Table III: Discusses the mean platelet volume in male patients with HbA1c level less than 6.5 versus more than 6.5.

HbA1c % (Males)	MPV (7-12fl)	MPV more than 12fl	χ^2/df	P value
HbA1c less than 6.5%	45(12.16%)	29(7.83%)	33.95/3	0.0001
HbA1c more than 6.5%	47(12.70%)	81(21.89%)		

Discussion

Diabetes mellitus is a syndrome which involve multiple system in the body e.g. eyes, kidney and cerebrovascular disease. In the Countries where the DM is most prevalent, including United States of America, China and India. To prevent complications of DM it is essential to monitor the severity of disease. Mean platelet volume is a latest indicator which predict the severity of diseases.¹⁶

The present study shows a significant correlation between MPV and Diabetes mellitus in male type 2, 81(21.89%) male expressed increased MPV ($\chi^2/df=33.95/3$ and P value=0.0001) while female also signifies a strong

association (64(17.29%) female expressed increased MPV (Odd ratio 3.07 and P value= 0.0006). The male association was slightly more than females. We found that diabetic participants, who had their Hba1c levels above 6.5%, were having a considerable higher level of MPV as compared to controlled diabetics having Hba1c level below 6.5%. The similar results were concluded by Adnan M et al ¹⁷ in 2020 who found Raised MPV in diabetics males were greater than diabetic females. In the current study it was noted that in male more significant rise in MPV was noted in male gender. In another study by Ding et al ¹⁸ in 2021 found similar results as of present study.

He concluded that MPV is increased in patients of type 2 diabetes as compared to healthy subjects. Kodiatte T et al In 2012 ¹⁶ found a directly proportional relationship between Hba1c score and MPV values. They found a 2 fold increase in MPV in diabetics with HbA1c greater than 6.5% as compared to diabetics with HbA1c less than 6.5%. This is in favor of present study. A contradictory result was found by Adanan et al ¹⁹ in 2020 found increase MPV in diabetic female pregnant subjects as compared to non-diabetic pregnant females. It was opposite to result of present study but the study conducted by Zhobwei Z was mainly of pregnant women and not on normal female gender. Güngör et al. In 2016 ²⁰ found contradicting results as of present study. He found no any significant correlation between MPV and glycemic control. Sertbas in 2017 ²¹ found increase MPV in diabetics as compared to normal healthy subjects. Erhanin ²² in 2019 found no significant relation between diabetes type 2 and mean platelet volume but in the study conducted by Avarna et al ²³ in 2023 found more raised MPV in patients of diabetes with HBA1c greater than 7% as compared to HBA1c less than 7%. This is in favor of present study. Oshima et al ²⁴ in 2018 evaluated that MPV in uncontrolled diabetes is highly raised as compared to controlled diabetes. They followed the criteria of Hba1c distribution in two groups (less than 6.5 and greater than 6.5). a similar type of result was deduced by Essawi K ²⁵ in 2023 who discovered that hyperglycemia for a prolong duration produces oxidative stress which affects the physiology, morphology and metabolism of cells , it also damages the endothelial lining of blood vessels leading to wide spread state of coagulation and thrombosis in blood. The study conveyed by Lemchukwu et al. in 2023 presents no any significant correlation between MPV and Hba1c score.

This discussion provides an insight of the relationship between mean platelet volume and diabetes mellitus. Most of the studies are in favor of the results deduced in the

current study i.e. mean platelet volume increases in diabetes mellitus but few results are contradictory to results of current study.

LIMITATIONS: the first limitation of present study is its small sample size, second the result of present study cannot be impose on a wide variant of population because the participants were from a single district and health care institute of Mirpurkhas and lastly the study design was cross sectional which shows the correlation between Hba1c and MPV but cannot tell which one was the causing factor of other.

Conclusion

It was found that DM type2 have altering effects on platelet volume which make them highly active and more susceptible for thrombus formation. More researches globally are required to further elaborate and find the effects of DM type 2 on the morphology and physiology of Platelets. This will help to create new strategies for controlling diabetes up to Hba1c level 6.5 which is crucial to limit the drastic effects of DM type 2 on Blood parameters.

RECOMMENDATIONS: The hematological parameters especially mean platelet volume should be considered as a marker to estimate the glycemic control in patients of diabetes mellitus. More research is necessary in different regions of the globe to verify the association between MPV and serum glycemic level.

References

1. Seyed Ahmad Rasoulinejad, Is there an association between mean platelet volume and diabetic retinopathy? A case-control study, Caspian J Intern Med. 2021 Mar; 12(2): 129–134. doi: [10.22088/cjim.12.2.129](https://doi.org/10.22088/cjim.12.2.129)
2. Shilpi, K., Potekar, R.M. A Study of Platelet Indices in Type 2 Diabetes Mellitus Patients. *Indian J Hematol Blood Transfus.* 2018;34: 115–120. <https://doi.org/10.1007/s12288-017-0825-9>
3. Gacuta KM, Koper-Lenkiewicz OM, Milewska AJ, Ćwiklińska-Dworakowska M, Matowicka-Karna J, Kamińska J. Associations Between Mean Platelet Volume and Various Factors in Type 2 Diabetes Patients: A Single-Center Study from Poland. *Med Sci Monit.* 2023 Aug 31; 29:e941109. doi: [10.12659/MSM.941109](https://doi.org/10.12659/MSM.941109).
4. Akinsegun A, Olusola DA, Sarah JO, Olajumoke O, Adewumi A, Majeed O, Anthonia O, et al. Mean platelet volume and platelet count in type 2 diabetes Mellitus on treatment and non-diabetic mellitus controls in lagos, Nigeria. *Pan African Medical Journal.* 2014;18,42. doi: [10.1604/pamj.2014.18.42.3651](https://doi.org/10.1604/pamj.2014.18.42.3651).
5. Inoue H, Saito M, Kouchi K, Asahara S, Nakamura F, & Kido Y. Association between mean platelet volume in the pathogenesis of type 2 diabetes mellitus and diabetic macrovascular complications in Japanese

patients. *Journal of Diabetes Investigation*. 2019; <https://doi.org/10.1111/jdi.13198>

6. Priyal Shrivastava, Mahalaqua Nazli Khatib, Shilpa Gaidhane, Dipti Shrivastava, Abhay M Gaidhane, Quazi Syed Zahiruddin. Assessment of mean platelet volume (MPV) in subjects with Type 2 Diabetes Mellitus (T2DM) in a rural backdrop of central India. *Medical Science*. 2020; 24(101): 12-21.
7. Tasneem A, Naeem S, Din NU, Robert HM. Mean platelet volume as a predictive biomarker for retinopathy in patients with type 2 diabetes. *Pak Armed Forces Med J*. 2021 Aug;71(4):1351-1354. [doi:10.51253/pafmj.v71i4.6389](https://doi.org/10.51253/pafmj.v71i4.6389)
8. Cassano V, Armentaro G, Iembo D, Miceli S, Fiorentino TV, Succurro E. Mean platelet volume (MPV) as a new marker of diabetic macrovascular complications in patients with different glucose homeostasis. *Cardiovasc Diabetol*. 2024;23(1):89. [doi:10.1186/s12933-024-02177-3](https://doi.org/10.1186/s12933-024-02177-3)
9. Xu, F., Qu, S., Wang, L. et al. Mean platelet volume (MPV): new diagnostic indices for co-morbidity of tuberculosis and diabetes mellitus. *BMC Infect Dis*. 2021;21: 461. <https://doi.org/10.1186/s12879-021-06152-1>
10. Mathew TK, Zubair M, Tadi P. Blood Glucose Monitoring. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023. PMID: 32310436.
11. Milosevic D, Panin VL. Relationship Between Hematological Parameters and Glycemic Control in Type 2 Diabetes Mellitus Patients. *J Med Biochem*. 2019 Mar 3;38(2):164-171. [doi:10.2478/jomb-2018-0021](https://doi.org/10.2478/jomb-2018-0021).
12. Sinha A, Samaddar A, Talukdar M. Platelet indices in controlled and uncontrolled type 2 diabetes mellitus: A cross-sectional study. *Panacea J Med Sci*. 2022;12(3):533-537. [doi:10.18231/j.pjms.2022.101](https://doi.org/10.18231/j.pjms.2022.101)
13. Li Z, Wang J, Han X, Yuan J, Guo H, Zhang X, Zheng D, Tang Y, et al. Association of mean platelet volume with incident type 2 diabetes mellitus risk: the Dongfeng-Tongji cohort study. *Diabetol Metab Syndr*. 2018;10. <https://doi.org/10.1186/s13098-018-0333-6>
14. Aleksandra Korniluk, Olga Martyna Koper-Lenkiewicz, Joanna Kamińska, Halina Kemona, Violetta Dymicka-Piekarska. Mean Platelet Volume (MPV): New Perspectives for an Old Marker in the Course and Prognosis of Inflammatory Conditions, *Mediators of Inflammation*. 2019, Article ID 9213074, 14 pages, 2019. <https://doi.org/10.1155/2019/9213074>
15. Kucuk I, Tural E, Doğantekin B, Kaplan AT. Evaluation of platelet indices and pro-inflammatory cytokines in type 2 diabetic patients with retinopathy, *Rev Assoc Med Bras*. 2022 Nov; 68 (11):1537-1541. [DOI: 10.1590/1806-9282.20220479](https://doi.org/10.1590/1806-9282.20220479).
16. Kodiati TA, Manikyam UK, Rao SB, Jagadish TM, Reddy M, Lingaiah HK, Lakshmaiah V. Mean platelet volume in Type 2 diabetes mellitus. *J Lab Physicians*. 2012 Jan;4(1):5-9. [doi: 10.4103/0974-2727.98662](https://doi.org/10.4103/0974-2727.98662).
17. Adnan M, Aasim M. Prevalence of Type 2 Diabetes Mellitus in Adult Population of Pakistan: A Meta-Analysis of Prospective Cross-Sectional Surveys. *Ann Glob Health*. 2020;86(1):7. [doi: 10.5334/aogh.2679](https://doi.org/10.5334/aogh.2679).
18. Ding, Qinpei MM Wang, Fangwei MM Guo, Xintong MM Liang, Min MD. The relationship between mean platelet volume and metabolic syndrome in patients with type 2 diabetes mellitus: A retrospective study. *Medicine* 100(13):e25303, [DOI: 10.1097/MD.00000000000025303](https://doi.org/10.1097/MD.00000000000025303)
19. Zhongwei Zhou, Hongmei Chen, Mingzhong Sun, Huixiang Ju, Mean Platelet Volume and Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. *J. Diabetes Res*. 2018, Article ID 1985026, 10 pages, 2018. <https://doi.org/10.1155/2018/1985026>
20. Güngör AA, Gürsoy G, Güngör F, Bayram, SM, Atalay E. The relationship of mean platelet volume with retinopathy in type 2 diabetes mellitus. *Turk. J. Med. Sci*. 2016;46: 1292-1299.
21. Sertbas Y, Sertbas M, Okuroglu N, Ozturk MA., Abacar KY, Ozdemir A. Mean platelet volume changes before and after glycated hemoglobin (HbA1c) improvement in a large study population, *Arch. Med Sci*. 2017;13: 711-715.
22. Onalan E, Gozel N, Donder E. Can hematological parameters in type 2 diabetes predict microvascular complication development? *Pak J Med Sci*. 2019 Nov-Dec;35(6):1511-1515. [doi: 10.12669/pjms.35.6.1150](https://doi.org/10.12669/pjms.35.6.1150).
23. Agarwal A, Arya A, Saxena RS, Dube S. Mean platelet volume in type 2 diabetes: correlation with poor glycemic control. *EMJ Diabetes*. 2023 Nov. [doi:10.33590/emjdiabet/10309803](https://doi.org/10.33590/emjdiabet/10309803).
24. Oshima S, Higuchi T, Okada S, Takahashi O. The Relationship Between Mean Platelet Volume and Fasting Plasma Glucose and HbA1c Levels in a Large Cohort of Unselected Health Check-Up Participants. *J Clin Med Res*. 2018 Apr;10(4):345-350. [doi: 10.14740/jocmr3361w](https://doi.org/10.14740/jocmr3361w).
25. Essawi K, Dobie G, Shaabi MF, Hakami W. Comparative analysis of red blood cells, white blood cells, platelet count, and indices in type 2 diabetes mellitus patients and normal controls: association and clinical implications. *Diabetes Metab Syndr Obes*. 2023 Oct;16:3123-3132. [doi:10.2147/DMSO.S422373](https://doi.org/10.2147/DMSO.S422373).
26. Lemchukwu Chukwunonye Amaeshi, Olufunto Olufela Kalejaiye, Oluwarotimi Bolaji Olopade et al. Relationship between hematologic inflammatory markers and glycemic control in patients with Type 2 Diabetes Mellitus in a tertiary hospital in Lagos, Nigeria: a cross-sectional study, 12 July 2023, PREPRINT (Version 1) available at Research Square <https://doi.org/10.21203/rs.3.rs-3137000/v1>