Original Article

Diagnostic Accuracy of Fine Needle Aspiration Cytology (FNAC) in Salivary Gland Tumors

Farah Farhan¹, Maria Ilyas², Sadia Muneer³, Abeer Zahra⁴, Zainab Niazi⁵,
Mariya Farooq⁶

¹Associate Professor Oral Pathology Rawal Institute of Health Sciences, Islamabad
²Assistant Professor Oral Pathology, CMH Lahore, ³Assistant Professor Oral Pathology, NUMS, Islamabad
⁴Demonstrator Oral Pathology Rawal Institute of Health Sciences, Islamabad
⁵Associate Professor Oral Pathology, Islamabad Dental Hospital, Islamabad
⁶Demonstrator Oral Pathology Margalla Institute of Health Sciences, Islamabad

Abstract

Objectives: To evaluate the diagnostic accuracy of fine needle aspiration cytology (FNAC) by comparing its findings with the gold standard histological features of salivary gland lesions.

Methodology: This retrospective study was conducted at the Department of Histopathology, Islamabad Medical and Dental Hospital (IMDC), from January 2023 to December 2023, patients presenting with salivary gland swellings. Fifty-seven patients having salivary gland swelling were included on which both histological and cytological evaluation had been done. Twenty cases were excluded because either they had lack of correlation between FNAC and histology or on view of inadequate material. All the patients were clinically evaluated clinically and FNAC was done using 10ml disposable syringe and 23/24-gauge needle without using local anesthesia. The histopathology of the surgical specimens and cytology of the FNAC specimens were compared, and the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were evaluated.

Results: On FNAC, 37 cases were diagnosed cytologically, as 9 cases identified malignant and 28 as benign. Histopathological examination confirmed 9 malignant cases and 25 benign cases, whereas 3 cases were classified as false positive. The specificity and sensitivity of FNAC were 75% and 94%, respectively. Overlapping cytological features, heterogeneity, and unsampled areas were the primary factors contributing to false-positive.

Conclusion: This study showed that salivary gland FNA cytology is a valuable diagnostic technique for salivary gland lesions, however due to great variation in pleomorphic adenoma, the samples must be confirmed by histopathological features.

Keywords: Fine needle aspiration cytology; Salivary gland neoplasm; Histopathology; Cytology

Introduction

Histopathology is confirmed for the gold in the final diagnosis and staging of salivary gland lesions. However, fine needle aspiration cytology (FNAC) is widely used method for preoperative diagnosis because of it valuable and safe methodology.¹ It aids in widely categorizing salivary gland lesions into inflammatory, non-neoplastic, and neoplastic conditions—differentiating between benign and malignant. Accurate FNAC diagnosed results have significant therapeutic implications and help clinicians in managing patient.²-⁴ Despite it is being widely used, cytopathologic evaluation can be prone to pitfalls and challenging. The diagnostic validity and accuracy of FNAC depends on the quality of the aspirate and the experience and technical knowledge of the
cytopathologist. The diagnostic difficulties are enhanced by the heterogeneity of salivary gland tumors, which shows a wide variety of histopathologic features.\(^5\)\(^-\)\(^7\) The basic aim of our study was to evaluate the diagnostic reliability, specificity, sensitivity of FNAC in differentiating inflammatory, benign, and malignant salivary gland lesions by correlating FNAC results with histopathological diagnosis. Additionally, we analyzed the reasons of discrepancies in results in salivary gland lesions by comparing results cytologic smears with the histopathologic findings of resected specimens. Fine needle aspiration cytology (FNAC) is a valuable diagnostic tool for evaluating salivary gland tumors.

Methodology

The present study was conducted at Islamabad Medical and Dental Hospital over the duration of a year, from January 2023 to December 2023 retrospectively. Ethical approval for the study was granted by the Institutional Review Board (IRB) under ID: SP20/123/J. We selected 57 cases of salivary gland swelling, having both cytological and histological examinations. Two cases were excluded due to scanty aspirate on Fine Needle Aspiration Cytology (FNAC), and another 18 cases had either only cytology or histology reports available so were excluded. Consequently, the study included 37 cases for which cytopathologist.

The cytological results of the FNAC specimens. The histopathological findings of resected specimens. FNAC was more commonly performed on the right side (61.6%) compared to the left side (38.4%), as shown in Figure 1.

![Figure 1. FNAC frequency based on laterality and location (N=37)](image)

All patients had a good to excellent outcome. Mean age at presentation was 5.3 years (range 1.2 to 11.7 year). The dartos fascia was loosely attached to penile shaft in all cases. Sixteen patients were of grade 1 BP out of which 5 were retained penis after circumcision, four grade 2 and 3 of grade 3 BP. (Table 1) The mean penile shaft exposed length before and after surgery was 2.63 ± 0.59 cm and 4.33 ± 0.51 cm, respectively (P < 0.05). The inner preputial skin length was 2.8 cm (range 2.3 to 4.2 cm). long inner prepuce (LIP) was present in every case. the excision of inner prepuce and fixation of skin to tunica albuginea was done in every patient. on follow up 1 patient developed hematoma which was dealt with hematoma drainage by opening few stiches and re stitching of the wound.

Out of 37 subjects who underwent FNAC (Fine Needle Aspiration Cytology) of their salivary glands during the study, 27.16% were between the ages of 21 and 30, while 72.84% were between the ages of 31 and 40. The age group with the highest prevalence was 31-40 years (72.84%), followed by the 21-30 years group (17.28%). The average age of the patients was 18.97 ± 36.89 years, ranging from 21 to 40 years. The gender distribution included 27 females (72.9%) and 10 males (27%), resulting in a male-to-female ratio of 1:1.33. The parotid gland was the most frequently observed site for FNAC, accounting for 66.5% of cases, followed by the submandibular gland with 33.5%. FNAC was more commonly performed on the right side (61.65%) compared to the left side (38.35%), as shown in Figure 1.
On continued follow up 1 patients developed recurrence from grade 3. (Table II) all the patients were followed up for 1 to 3 years.

Table I: Distribution of salivary gland lesions based on location.

<table>
<thead>
<tr>
<th>FNAC Diagnosis</th>
<th>Site</th>
<th>Parotid N 26 (%)</th>
<th>Total No in both glands (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sub-Mandibular N 11 (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Sialadenitis</td>
<td>1 (2.70%)</td>
<td>2 (5.41%)</td>
<td>3 (8.11%)</td>
</tr>
<tr>
<td>Pleomorphic Adenoma</td>
<td>3 (8.11%)</td>
<td>15 (40.54%)</td>
<td>18 (48.65%)</td>
</tr>
<tr>
<td>Chronic Sialadenitis</td>
<td>1 (2.70%)</td>
<td>1 (2.70%)</td>
<td>2 (5.40%)</td>
</tr>
<tr>
<td>Warthin Tumor</td>
<td>2 (5.41%)</td>
<td>3 (8.11%)</td>
<td>5 (13.52%)</td>
</tr>
<tr>
<td>Acinic Cell Carcinoma</td>
<td>1 (2.70%)</td>
<td>1 (2.70%)</td>
<td>2 (5.40%)</td>
</tr>
<tr>
<td>Mucoepidermoid Carcinoma</td>
<td>3 (8.11%)</td>
<td>3 (8.11%)</td>
<td>6 (16.22%)</td>
</tr>
<tr>
<td>Adenoid Cystic Carcinoma</td>
<td>0 (0.00%)</td>
<td>1 (2.70%)</td>
<td>1 (2.70%)</td>
</tr>
<tr>
<td>Carcinoma ex Pleomorphic</td>
<td>0 (0.00%)</td>
<td>0 (0.00%)</td>
<td>0 (0.00%)</td>
</tr>
<tr>
<td>Total</td>
<td>11 (29.73%)</td>
<td>26 (70.27%)</td>
<td>37 (100%)</td>
</tr>
</tbody>
</table>

Table II: Results of FNAC and diagnosis by biopsy and their association.

<table>
<thead>
<tr>
<th>Cytologic Diagnosis</th>
<th>Histologic Diagnosis</th>
<th>Pleomorphic Adenoma Frequency (n)</th>
<th>Adenoid Cystic Carcinoma Frequency (n)</th>
<th>Mucoepidermoid Carcinoma Frequency (n)</th>
<th>Warthin Tumor Frequency (n)</th>
<th>Acinic Cell Carcinoma Frequency (n)</th>
<th>Acute Sialadenitis Frequency (n)</th>
<th>Chronic Sialadenitis Frequency (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Sialadenitis</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pleomorphic Adenoma</td>
<td></td>
<td>18</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chronic Sialadenitis</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Warthin Tumor</td>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adenoid cystic Carcinoma</td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mucoepidermoid Carcinoma</td>
<td></td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acinic Cell Carcinoma</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Warthin Tumor</td>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adenoid cystic Carcinoma</td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table III: Accuracy, Specificity and Sensitivity of FNAC.

- **Sensitivity** = number of true positives / number of true positives + number of false negatives = 94%
- **Accuracy** = number of true positives + number of true negatives / number of true positives + false negatives + false negatives + true negatives = 84%
- **Specificity** = number of true negatives / number of true negatives + number of false positives = 75%
- **Negative predictive value** = number of true negatives / number of true negatives + number of false negatives = 71%
- **Positive predictive value** = number of true positives / number of true positives + number of false positives = 86%
- **Sensitivity** = number of true positives / number of true positives + number of false negatives = 94%

Discussion

The accuracy of FNAC in diagnosing salivary gland tumors is high. Of head and neck malignancies, 3% are primary salivary gland tumors. Histopathological features in malignant salivary gland tumors, especially those that are well-differentiated, overlap with those of benign tumors. The main course of treatment for cancers of the salivary glands is surgery; adjuvant radiation and/or chemotherapy may be used based on the tumor's histologic type, grade, and stage. The most significant diagnostic technique is FNAC, particularly in the preoperative diagnosis of large SG primary tumors. It is more accurate in diagnosing SG lesions than physical examination and imaging techniques, with a range of 80-95% [10-13]. FNAC is used to attempt to determine if the mass is benign, malignant, neoplastic, or inflammatory.
It should be reported if a malignancy diagnosis is made, regardless of whether the tumor is a primary salivary gland tumor or a metastatic one. The grade (low/high) of a primary salivary gland tumor should be indicated if one is found. As a result, it is possible to distinguish between masses that need surgery and those that do not, to partially select the type of operation, and to partially prevent treatment-related difficulties for the patient.\(^{14-20}\)

According to the preoperative assessment of primary salivary gland tumors in our study, FNAC has a sensitivity, specificity, and accuracy of above 94%, 75% and 84% respectively. Alphs et al. reported a 90–95% accuracy rate for FNAC, while Al Salamah's study reported an 89% accuracy rate.\(^{21-23}\) Preoperative FNAC demonstrated a sensitivity of 59.09%, specificity of 97.85%, accuracy of 93.75%, positive predictive value of 76.47%, and negative predictive value of 95.2% for the detection of malignancy, according to a study by Yıldız et al.\(^{24}\) The differences between our study and others, such as the study by Yıldız et al., can be attributed to several factors. These include variations in study populations and tumor types, differences in the expertise and techniques of cytopathologists, and discrepancies in study design and statistical methods.

In the present study, age group of 2rd and 3rd decade had more salivary gland lesions and female predominance was found which was 1:1.33 in other studies similarly females were outnumbered.\(^{25}\) Parotid gland was found in 67.35% cases and is similar to other studies. There were 24 (58.65%) benign lesions and 10 (19.2%) malignant cases, these incidences were also comparable to other studies.\(^{26}\) 18 out of 37 cases diagnosed as pleomorphic adenoma on FNAC, 15 out of 37 cases were correctly confirmed by histopathology and remaining three case were false positive. Errors may be due to sampling technique as from nonrepresentative areas with inflammation and pathological changes. FNAC samples taken from pleomorphic adenoma shows epithelial type cells with chondromyxoid background. This is similar to other studies as 50% and 21.6% cases were of pleomorphic adenoma.\(^{27}\) There were 5 cases of sialadenitis confirmed on histopathology, while no case of sialadenitis were confirmed on histopathology. Out of five cases of sialadenitis, two were confirmed as pleomorphic, one as Warthin’s tumor and one was mucoepidermoid carcinoma on histopathology. In present study cyto-histological correlation of for chronic sialadenitis was 62.5% compared to 90% and 81.8% in other studies.\(^{28}\) The diagnostic sensitivity of FNAC in detecting malignant disease was 97.4% and specificity was 71.1. Sampling error can lead to increase number of false negative and false positive FNAC results and decrease in diagnostic accuracy. In our study there were 3 (4.34%) false positive cases, one was on FNAC diagnosed as acute sialadenitis and other two were pleomorphic adenoma on FNAC. These cases have varied complex and overlapping morphological features which make the diagnosis difficult.

Conclusion

In conclusion, we found a good relation between final histology and FNAC, however there is a challenge in diagnoses of pleomorphic adenoma as it has wide variations in cytology and when aspirated inadequately and therefore either immunohistochemical or repeat aspiration should be advised before embarking on therapeutic excision.

References

