

Thyroid Function Test as a Screening Tool for Diagnosis of Thyroid Diseases; A One Year Study Conducted at a District Hospital

Warda Hussain¹, Muhammad Usman Sajid², Nabila Akram³, Muhammad Khalid⁴,

Saba Izhar⁵, Syeda Luba Hussain⁶

¹Assistant Professor Pathology, Nawaz Sharif Medical College, Gujrat

²Associate Professor Medicine, CMH Kharian Medical College, Kharian

³Assistant Professor Pathology, Avicenna Medical College and Hospital Lahore

⁴Professor of Medicine, CMH Kharian Medical College Kharian

⁵Assistant Professor, Department of Medicine, CMH Kharian Medical College, Kharian

⁶Senior lecturer, Watim Medical College Rawalpindi

Author's Contribution

¹Substantial contributions to the conception or design of the work or the acquisition, ²Final approval of the version to be published.

³Drafting the work or revising it critically for important intellectual content,

Funding Source: None

Conflict of Interest: None

Received: Nov 11, 2023

Accepted: May 26, 2024

Address of Correspondent

Dr Warda Hussain

Assistant Professor Pathology
Nawaz Sharif Medical College,
Gujrat

drwwali@gmail.com

ABSTRACT

Objective: To evaluate the prevalence of abnormalities in thyroid function tests among individuals from Gujrat district seeking evaluation at Aziz Bhatti Shaheed Teaching Hospital in Gujrat.

Methodology: All specimens tested for Thyroid Function Tests (TFTs) in the hospital laboratory between January 2023 and December 2023 were included in the study. The results of the thyroid function tests were classified into categories of hypothyroidism and hyperthyroidism based on established criteria. Hypothyroidism was defined as a TSH level above the reference range, typically greater than 4.0 milli-international units per liter (mIU/L). A typical cut-off value for diagnosing hyperthyroidism was a TSH level below the reference range, usually less than 0.4 mIU/L, in conjunction with elevated FT4 and/or T3 levels. Data were analyzed using the Statistical Package for the Social Sciences (SPSS) version 25.

Results: The mean age of the participants was 35.39 years, The majority of participants were female, accounting for 82.3%, while males constituted 17.7% of the total sample. The most of the cases 62.0% had normal values of thyroid profile, while hypothyroidism cases were found 15.20% and 21.90% cases had hyperthyroidism. Furthermore, the analysis suggests that there is no significant association between types thyroid disorders and age groups ($p = 0.156$) or gender ($p = 0.973$).

Conclusion: In conclusion, our analysis of thyroid profiles revealed a higher prevalence of thyroid disorder (Hypothyroidism 15.20% and 21.90% hyperthyroidism) according to a one-year data. Moreover, thyroid is not significantly influenced by age and gender. These results underscore the importance of routine thyroid screening to identify and manage thyroid disorders effectively, irrespective of age or gender.

Key words: Thyroid disorder, Hypothyroidism, TSH.

Cite this article as: Hussain W, Sajid MU, Akram N, Khalid M, Izhar S, Hussain SL. Thyroid Function Test as a Screening Tool for Diagnosis of Thyroid Diseases; A One Year Study Conducted at a District Hospital. Ann Pak Inst Med Sci. 2024; 20(3):379-383. doi: 10.48036/apims.v20i3.1032

Introduction

Thyroid disorders are widely recognized as a major public health concern globally and are ranked as the second most common endocrine disorder.¹ In Pakistan, the prevalence of hypothyroidism and hyperthyroidism is

4.1% and 5.1% respectively, while subclinical hyperthyroidism and subclinical hypothyroidism are observed at rates of 5.8% and 5.4% respectively,²⁻⁴ and the figures are on the rise over time. On a global scale, women are typically five to eight times more prone to developing thyroid disorders compared to men.³ It's

estimated that one in every eight women will experience a thyroid disorder at some point in her lifetime.⁵ The thyroid gland, situated in the front of the neck, is recognized as the largest endocrine gland in humans. It produces and releases thyroid hormones known as triiodothyronine (T3) and thyroxine (T4), which play a significant role in regulating the body's basal metabolic rate (BMR) and protein synthesis. Additionally, these hormones are essential for the neurocognitive development of children and adolescents, as well as for maintaining normal physiological functions in adults.⁶

The pathophysiology of numerous thyroid disorders is associated with thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4). TSH serves as the primary chemical indicator of thyroid function. Low levels of TSH are indicative of hyperthyroidism, while elevated levels typically signify hypothyroidism.⁷ Patients may exhibit either subclinical or overt thyroid disease. In addition to clinical assessment, thyroid function tests (TFTs) are crucial for both diagnosing and monitoring thyroid disorders.⁸ Thyrotoxicosis, a condition of heightened metabolism is diagnosed through the measurement of T4 and T3 levels. It results from either an overactive thyroid gland or increased synthesis and release of thyroid hormones. The incidence of hyperthyroidism is relatively lower, around 2%, compared to hypothyroidism in the general population of Pakistan.⁹ Graves' disease, toxic multinodular goiter, and toxic adenoma account for approximately 90% of cases of thyrotoxicosis or hyperthyroidism.^{7,8}

When the thyroid gland fails to produce T3 and T4, it triggers the pituitary gland to increase the production of thyroid stimulating hormone (TSH) through a negative feedback mechanism. This lack of thyroid hormone production initiates the process in over 95% of patients. The remaining five percent of cases experience hypothyroidism as a result of pituitary dysfunction, characterized by inadequate production of TSH by the pituitary gland. The primary cause of hypothyroidism is typically chronic autoimmune thyroiditis, also known as Hashimoto's disease. Other contributing factors include iodine deficiency, sub-acute thyroiditis, as well as surgical and radiation treatments.^{8,10} In Pakistan, clinical and subclinical hypothyroidism is prevalent in up to 4.1% of adults and 5.4% of children, with a higher occurrence of both hypothyroidism and hyperthyroidism observed in females compared to males.¹¹

A study conducted in 2017 indicated that the occurrence of subclinical hypothyroidism among the population of

Karachi was found to be 13.6% in females, whereas it was only 9.2% in males.¹² Although most individuals with subclinical hyperthyroidism are considered clinically euthyroid, if TSH suppression persists for more than 6 to 8 weeks, it is recommended to investigate for underlying chronic thyroid conditions such as autonomously functioning thyroid nodules, toxic multinodular goiter (MNG), and Graves' disease. This is crucial as such conditions can have implications for mortality, cardiovascular health, bone density, and potentially cognitive function.¹³ The increase in the number of thyroid disorders signifies the need to understand the prevalence and the factors resulting these disorders there is a paucity of national data about biochemical changes in thyroid function tests (TFTs). The aim of this study was to investigate the prevalence of abnormalities in thyroid function tests among individuals from Gujrat district seeking evaluation at Aziz Bhatti Shaheed Teaching Hospital in Gujrat. Additionally, the research sought to analyze the distribution of these thyroid disorders based on gender. This exploration is vital for understanding the frequency of such disorders within the local population and will serve to increase awareness among healthcare professionals tasked with managing thyroid-related issues.

Methodology

The cross-sectional study was conducted at ABSTH, Gujrat after approval from the Institutional review board of Nawaz Sharif Medical College. All specimens tested for Thyroid Function Tests (TFTs) in the hospital laboratory between January 2023 and December 2023 were included in the study. The study protocol adhered to ethical guidelines, ensuring patient confidentiality and privacy. Informed consent was not required since the study involved retrospective analysis of laboratory data. Specimens with incomplete or missing data for thyroid function tests, specimens from patients with known thyroid disorders who were receiving treatment at the time of testing, specimens from patients with comorbid conditions known to affect thyroid function, such as pregnancy, severe illness, or autoimmune diseases, specimens from individuals who underwent thyroid surgery or radioactive iodine therapy prior to testing, specimens from patients on medications known to interfere with thyroid function tests, such as corticosteroids or amiodarone, unless specified for analysis purposes were excluded. Serum concentrations of Thyroid-Stimulating Hormone (TSH), total triiodothyronine (T3), and total thyroxine (T4) were

measured using the chemiluminescent technique assay on the Vitros analyzer. The results of the thyroid function tests were classified into categories of hypothyroidism and hyperthyroidism based on established criteria. Hypothyroidism was defined as a TSH level above the reference range, typically greater than 4.0 milli-international units per liter (mIU/L). Diagnosis of hyperthyroidism was based on elevated serum levels of free thyroxine (FT4) and/or triiodothyronine (T3), along with low or suppressed TSH levels. A typical cut-off value for diagnosing hyperthyroidism was a TSH level below the reference range, usually less than 0.4 mIU/L, in conjunction with elevated FT4 and/or T3 levels. Data were analyzed using the Statistical Package for the Social Sciences (SPSS) version 25. Descriptive statistics were utilized to determine the frequency and percentages of qualitative variables such as gender, and biochemical diagnosis. Mean and standard deviation (SD) were calculated for numerical variables like age. A chi-square test was applied, and a p-value less than 0.05 was considered statistically significant.

Results

The mean age of the participants was 35.39 years, with a standard deviation of 14.80 years. Serum levels of thyroid-stimulating hormone (TSH) were found to have a mean of 6.28 mIU/L with a standard deviation of 17.24 mIU/L, while mean of triiodothyronine (T3) and thyroxine (T4) was 2.40 mIU/L and 66.68 mIU/L, respectively, with standard deviations of 32.71 mIU/L and 72.49 mIU/L. Regarding gender distribution, the majority of participants were female, accounting for

82.3% (n=1362), while males constituted 17.7% (n=292) of the total sample. Table 1

Table I: Descriptive statistics of baseline characteristics (n= 1654)

Variables	Descriptive statistics	
Age	35.39	+14.80 years
TSH	6.28	+17.24 mIU/L
T3	2.40	+32.71 mIU/L
T4	66.68	+72.49 mIU/L
Gender	Female	1362 82.3%
	Male	292 17.7%
	Total	1654 100.0%

According to the prevalence of thyroid disorders among patients screened at Hospital laboratory to assess the thyroid disorder, the most of the cases 62.0% had normal values of thyroid profile, while hypothyroidism cases were found 15.20% and 21.90% cases had hyperthyroidism.

Thyroid disorders categorized by age groups and gender of the patients, with a total sample size of 1654 individuals. The table includes three types of thyroid disorders: hyperthyroidism, normal thyroid function, and hypothyroidism. Each cell within the table indicates the number of patients falling into each category, along with the corresponding percentages. The analysis suggests that there is no significant association between thyroid disorders and age groups (p = 0.156) or gender (p = 0.973). Table II

Discussion

In this study a total of 1654 participants, provide valuable insights into the demographic and biochemical

Table II: Thyroid disorders according to age and gender of the patients (n=1654)

Variables	THYROID DISORDERS			p-value	
	Hyperthyroidism	Normal	Hypothyroidism		
Age groups	1-5 years	2	23	7	32
		0.1%	1.4%	0.4%	1.9%
	6-15 years	9	67	28	104
		0.5%	4.1%	1.7%	6.3%
	16-30 years	68	343	119	530
		4.1%	20.9%	7.2%	32.3%
	31-45 years	94	386	123	603
		5.7%	23.5%	7.5%	36.7%
Gender	46-60 years	56	179	64	299
		3.4%	10.9%	3.9%	18.2%
	61-75 years	13	39	17	69
		0.8%	2.4%	1.0%	4.2%
	>75 years	0	3	3	6
		0.0%	0.2%	0.2%	0.4%
	Male	44	184	63	291
		2.7%	11.2%	3.8%	17.7%
Female		198	856	298	1352
		12.1%	52.1%	18.1%	82.3%

characteristics of individuals undergoing thyroid function testing. The mean age of the participants was 35.39 years, indicating a relatively young adult population, with a standard deviation of 14.80 years. In the comparison of this study Masood N et al¹⁴ included 100 patients in their aged between 16 and 55 years, with an overall average age of 35.3 years and a standard deviation of 7.8 years. In another Imran M et al¹⁵ the study by two hundred and three patients participated in the study, averaging 42.19 years with a standard deviation of 10.48 years. This distribution suggests that thyroid disorders are not limited to any specific age group but can affect individuals across a wide range of ages.

Gender distribution within the study cohort revealed a predominance of females, accounting for 82.3% of the total sample, compared to 17.7% of males. Consistently Masood N et al¹⁴ included 100 patients in their study and of whom 23 (23%) were men and 77 (77%) were women. Imran Met al¹⁵ reported that among all of the study subjects, males were 73 (35.9%) and females were (64.1%), resulting in a male to female ratio of 1 to 1.78. This gender disparity is consistent with epidemiological data indicating a higher prevalence of thyroid disorders among females, attributed in part to hormonal influences and autoimmune mechanisms. Furthermore, our analysis revealed no significant association between specific types of thyroid disorders and age groups ($p = 0.156$) or gender ($p = 0.973$). These findings suggest that the prevalence of hyperthyroidism and hypothyroidism disorders does not vary significantly across different age groups or between genders within our study population.

In this study the frequency of thyroid disorders among suspected patients screened at Hospital laboratory was 40.0%. With an overall average of thyroid-stimulating hormone (TSH) levels 6.28 mIU/L, mean serum levels of triiodothyronine (T3) and thyroxine (T4) were found to be 2.40 mIU/L and 66.68 mIU/L, respectively. In aligns with this study Bukhari SI et al¹⁶ reported that the 55 cases (17.4%) were diagnosed with subclinical hypothyroidism, 27 cases (8.5%) with hypothyroidism, 19 patients (6.0%) with hyperthyroidism, and 16 cases (5.0%) with subclinical hyperthyroidism. Like this study Zubair M et al¹⁷ reported that the out of the 239 thyroid profiles analyzed, 146 (61%) were determined to be within the normal range. However, the thyroid profiles of 93 patients (38.9%) were disrupted, indicating the presence of various thyroid disorders.¹⁷ In the line of this series Salih SM et al¹⁸ reported that the approximately 23.8% of the total patients were diagnosed with

hyperthyroidism, while about 22.7% were diagnosed with hypothyroidism. The prevalence of thyroid diseases was higher among females compared to males.¹⁸ Few other studies also found relevant observations. The slightly higher prevalence of thyroid disorders in our study might be attributed to differences in the study population or geographic location. Our study could have encompassed patients with diverse demographic characteristics or from regions with distinct environmental influences known to affect thyroid function. Moreover, our analysis did not involve sample selection based on specific risk factors or comorbidities, nor did it rely on indications for thyroid disorder tests. This approach may have facilitated a more comprehensive representation of the general population, allowing for the detection of a wider range of thyroid disorders prevalent within the community.¹⁹ Overall, these factors underscore the importance of considering various methodological disparities and contextual elements when interpreting and comparing the prevalence rates of thyroid disorders across different studies. Further studies should aim to include a more diverse and representative sample of the population to better understand the true prevalence of thyroid disorders across different demographic groups. Conducting prospective studies with standardized data collection methods can enhance the accuracy and reliability of the findings, reducing potential biases associated with retrospective record analysis. Investigating the influence of various factors such as diet, lifestyle, and genetic predispositions on thyroid function can provide a more comprehensive understanding of thyroid disorder prevalence and risk factors.

Conclusion

In conclusion, study revealed analysis of thyroid profiles over the course of one year demonstrated that 15.20% of cases were diagnosed with hypothyroidism, while 21.90% exhibited hyperthyroidism, indicating a significant prevalence of thyroid disorders within our population. Furthermore, findings suggest that thyroid function higher among females compared to males while not significantly influenced particular types of by age or gender, highlighting the need for universal thyroid screening across diverse demographic groups. These results emphasize the critical role of routine thyroid screening in early detection and effective management of thyroid disorders, irrespective of demographic characteristics. By implementing systematic thyroid screening protocols, healthcare providers can proactively

identify and address thyroid dysfunction, thereby improving patient outcomes and overall thyroid health.

References

- Hassan-Kadle MA, Adani AA, Eker HH, Keles E, Muse Osman M, Mahdi Ahmed H, et al. Spectrum and Prevalence of Thyroid Diseases at a Tertiary Referral Hospital in Mogadishu, Somalia: A Retrospective Study of 976 Cases. *Int J Endocrinol.* 2021 Dec 26;2021:7154250. [doi: 10.1155/2021/7154250](https://doi.org/10.1155/2021/7154250).
- Qureshi IS, Khalid S, Jabeen S, Waseem H, Tariq M, Khan R. Frequency of different thyroid disorders among females attending Sir Ganga Ram Hospital, Lahore. *Asian J Allied Health Sci.* 2019;4(4):20-8.
- Lee SY, Pearce EN. Assessment and treatment of thyroid disorders in pregnancy and the postpartum period. *Nat Rev Endocrinol.* 2022 Mar;18(3):158-171. [doi: 10.1038/s41574-021-00604-z](https://doi.org/10.1038/s41574-021-00604-z).
- Shah N, Ursani TJ, Shah NA, Raza HMZ. Prevalence and manifestations of hypothyroidism among population of Hyderabad, Sindh, Pakistan. *Pure Appl Biol.* 2021;10(3):668-75. <https://doi.org/10.19045/bspab.2021.100069>
- Nafisa A, Ikram N, Khursheed S, Anjum R, Akhtar N. Epidemiologic Profile of Thyroid Disorders in a Tertiary Care Hospital, a Five Years Analysis. *J Rawalpindi Med Coll.* 2021; 25(4): 466-471. <https://doi.org/10.37939/irmc.v25i4.1682>
- Alyahya A, AlNaim A, AlBahr AW, Almansour F, Elshebiny A. Knowledge of thyroid disease manifestations and risk factors among residents of the Eastern Province, Saudi Arabia. *Cureus.* 2021 Jan 31;13(1) <https://doi.org/10.7759/cureus.13035>
- Attaullah S, Haq BS, Muska M. Thyroid dysfunction in Khyber Pakhtunkhwa, Pakistan. *Pak J Med Sci.* 2016;32(1):111-5.
- Rafiq M, Arooj A, Siddiq A, Fayyaz N, Khan S, Saeed R. The spectrum of biochemical changes in thyroid function tests performed at Sahiwal Medical College, Sahiwal. *J Islamabad Med Dent Coll.* 2023;12(2):122-6. <https://doi.org/10.35787/jimdc.v12i2.842>
- Canaris GJ, Monowity NR, Mayor G, Ridgway EC. The Colorado thyroid prevalence study. *Arch Intern Med.* 2000;160:526-34. <https://doi.org/10.1001/archinte.160.4.526>
- Rajalakshmi AN, Begam F. Thyroid hormones in the human body: A review. *Journal of Drug Delivery and Therapeutics.* 2021;11(5):178-82. DOI <https://doi.org/10.22270/jddt.v11i5.5039>
- Shah N, Ursani TJ, Shah NA, Raza HM. Prevalence and manifestations of hypothyroidism among population of Hyderabad, Sindh, Pakistan. *Pure Appl Biol.* 2021;10(3):668-75. <https://doi.org/10.19045/bspab.2021-100069>
- Gul SJ, Ahmed W, Gul SF, Gul K, Basri R. Comparison of frequency and types of anemia in subclinical hypothyroidism and euthyroidism. *Pakistan Armed Forces Medical Journal.* 2023;73(SUPPL-1):S65-68. <https://doi.org/10.51253/pafmj.v73iSUPPL-1.5434>
- Smooke Praw S, Brent GA. Approach to the patient with a suppressed TSH. *J Clin Endocrinol Metab.* 2023;108(3):472-82. <https://doi.org/10.1210/clinem/dgac635>
- Masood N, Ghori R, Memon A, Memon S, Memon KI, Memon I, et al. Frequency of thyroid disorders during interferon and ribavirin therapy in chronic hepatitis C infection. *J Coll Physicians Surg Pak.* 2008 Jun 1;18(6):347-51.
- Imran M, Kammeruddin K, Sajid N. Frequency of thyroidal dysfunction in chronic hepatitis C sero positives. *Pak J Med Dent.* 2016;5(1):25-7.
- Bukhari SI, Ali G, Memon MY, Sandeelo N, Alvi H, Talib A, et al. Prevalence and predictors of thyroid dysfunction amongst patients with type 2 diabetes mellitus in Pakistan. *J Family Med Prim Care.* 2022;11(6):2739-43. https://doi.org/10.4103/jfmpc.jfmpc_2106_21
- Zubair M, Hameed Z, Farhat S, Kazmi T, Shahid N. Frequency of thyroid disorders in a tertiary care hospital of Lahore, Pakistan. *J Shalamar Med Dent Coll.* 2023 Jun 27;4(1):67-73. <https://doi.org/10.53685/jshmdc.v4i1.153>
- Salih SM, Kamel WA, Abbas MT, Abass KS. Prevalence of hyperthyroidism and hypothyroidism and its correlation with serum antithyroglobulin among patients in Kirkuk-Iraq. *J Adv Pharm Educ Res.* 2021;11(2):57-60. <https://doi.org/10.51847/kWVD06AagO>
- Poojary B, Wilson MM, Jose R, Sam SP, George AE. Thyroid medications and patient adherence: understanding prescription patterns and factors influencing treatment compliance. *Indones J Pharmacol Ther.* 2023;4(3):112-123. <https://doi.org/10.22146/ijpther.9375>